File size: 35,925 Bytes
c0f21d6
 
 
 
8444121
c0f21d6
8444121
c0f21d6
 
 
 
 
 
 
 
 
 
 
 
f749037
c0f21d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8444121
c0f21d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8444121
c0f21d6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from skimage.transform import resize\n",
    "import numpy as np\n",
    "from skimage.segmentation import mark_boundaries\n",
    "from keras.models import Model\n",
    "from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose\n",
    "from keras.optimizers import Adam, SGD\n",
    "from keras.callbacks import ModelCheckpoint\n",
    "from keras import backend as K\n",
    "from skimage.exposure import rescale_intensity\n",
    "from skimage import io\n",
    "from ..src.data.data_loader import load_train_data, load_test_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "K.set_image_data_format('channels_last')  # TF dimension ordering in this code\n",
    "\n",
    "img_rows = int(512/2)\n",
    "img_cols = int(512/2)\n",
    "smooth = 1.\n",
    "#We divide here the number of rows and columns by two because we undersample our data (We take one pixel over two) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def dice_coef(y_true, y_pred):\n",
    "    y_true_f = K.flatten(y_true)\n",
    "    y_pred_f = K.flatten(y_pred)\n",
    "    intersection = K.sum(y_true_f * y_pred_f)\n",
    "    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)\n",
    "\n",
    "\n",
    "def dice_coef_loss(y_true, y_pred):\n",
    "    return -dice_coef(y_true, y_pred)\n",
    "\n",
    "#The functions return our metric and loss"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_unet():\n",
    "    inputs = Input((img_rows, img_cols, 1))\n",
    "    conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)\n",
    "    conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)\n",
    "    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)\n",
    "\n",
    "    conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)\n",
    "    conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)\n",
    "    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)\n",
    "\n",
    "    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)\n",
    "    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)\n",
    "    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)\n",
    "\n",
    "    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)\n",
    "    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv4)\n",
    "    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)\n",
    "\n",
    "    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)\n",
    "    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)\n",
    "\n",
    "    up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)\n",
    "    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)\n",
    "    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)\n",
    "\n",
    "    up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)\n",
    "    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(up7)\n",
    "    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv7)\n",
    "\n",
    "    up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)\n",
    "    conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(up8)\n",
    "    conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv8)\n",
    "\n",
    "    up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)\n",
    "    conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(up9)\n",
    "    conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv9)\n",
    "\n",
    "    conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)\n",
    "\n",
    "    model = Model(inputs=[inputs], outputs=[conv10])\n",
    "\n",
    "    model.compile(optimizer=Adam(lr=1e-3), loss=dice_coef_loss, metrics=[dice_coef])\n",
    "\n",
    "    return model\n",
    "\n",
    "#The different layers in our neural network model (including convolutions, maxpooling and upsampling)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "def preprocess(imgs):\n",
    "    imgs_p = np.ndarray((imgs.shape[0], img_rows, img_cols), dtype=np.uint8)\n",
    "    for i in range(imgs.shape[0]):\n",
    "        imgs_p[i] = resize(imgs[i], (img_cols, img_rows), preserve_range=True)\n",
    "\n",
    "    imgs_p = imgs_p[..., np.newaxis]\n",
    "    return imgs_p\n",
    "\n",
    "#We adapt here our dataset samples dimension so that we can feed it to our network"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def train_and_predict():\n",
    "    print('-'*30)\n",
    "    print('Loading and preprocessing train data...')\n",
    "    print('-'*30)\n",
    "    imgs_train, imgs_mask_train = load_train_data()\n",
    "\n",
    "    imgs_train = preprocess(imgs_train)\n",
    "    imgs_mask_train = preprocess(imgs_mask_train)\n",
    "\n",
    "    imgs_train = imgs_train.astype('float32')\n",
    "    mean = np.mean(imgs_train)  # mean for data centering\n",
    "    std = np.std(imgs_train)  # std for data normalization\n",
    "\n",
    "    imgs_train -= mean\n",
    "    imgs_train /= std\n",
    "    #Normalization of the train set\n",
    "\n",
    "    imgs_mask_train = imgs_mask_train.astype('float32')\n",
    "\n",
    "    print('-'*30)\n",
    "    print('Creating and compiling model...')\n",
    "    print('-'*30)\n",
    "    model = get_unet()\n",
    "    model_checkpoint = ModelCheckpoint('weights.h5', monitor='val_loss', save_best_only=True)\n",
    "    #Saving the weights and the loss of the best predictions we obtained\n",
    "\n",
    "    print('-'*30)\n",
    "    print('Fitting model...')\n",
    "    print('-'*30)\n",
    "    history=model.fit(imgs_train, imgs_mask_train, batch_size=10, epochs=20, verbose=1, shuffle=True,\n",
    "              validation_split=0.2,\n",
    "              callbacks=[model_checkpoint])\n",
    "\n",
    "    print('-'*30)\n",
    "    print('Loading and preprocessing test data...')\n",
    "    print('-'*30)\n",
    "    imgs_test, imgs_id_test = load_test_data()\n",
    "    imgs_test = preprocess(imgs_test)\n",
    "\n",
    "    imgs_test = imgs_test.astype('float32')\n",
    "    imgs_test -= mean\n",
    "    imgs_test /= std\n",
    "    #Normalization of the test set\n",
    "\n",
    "    print('-'*30)\n",
    "    print('Loading saved weights...')\n",
    "    print('-'*30)\n",
    "    model.load_weights('weights.h5')\n",
    "\n",
    "    print('-'*30)\n",
    "    print('Predicting masks on test data...')\n",
    "    print('-'*30)\n",
    "    imgs_mask_test = model.predict(imgs_test, verbose=1)\n",
    "    np.save('imgs_mask_test.npy', imgs_mask_test)\n",
    "    print('-' * 30)\n",
    "    print('Saving predicted masks to files...')\n",
    "    print('-' * 30)\n",
    "    pred_dir = 'preds'\n",
    "    if not os.path.exists(pred_dir):\n",
    "        os.mkdir(pred_dir)\n",
    "\n",
    "    for k in range(len(imgs_mask_test)):\n",
    "        a=rescale_intensity(imgs_test[k][:,:,0],out_range=(-1,1))\n",
    "        b=(imgs_mask_test[k][:,:,0]).astype('uint8')\n",
    "        io.imsave(os.path.join(pred_dir, str(k) + '_pred.png'),mark_boundaries(a,b))\n",
    "    #Saving our predictions in the directory 'preds'\n",
    "    plt.plot(history.history['dice_coef'])\n",
    "    plt.plot(history.history['val_dice_coef'])\n",
    "    plt.title('Model dice coeff')\n",
    "    plt.ylabel('Dice coeff')\n",
    "    plt.xlabel('Epoch')\n",
    "    plt.legend(['Train', 'Test'], loc='upper left')\n",
    "    plt.show()\n",
    "    #plotting our dice coeff results in function of the number of epochs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "------------------------------\n",
      "Loading and preprocessing train data...\n",
      "------------------------------\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\Admin\\Anaconda3\\lib\\site-packages\\skimage\\transform\\_warps.py:105: UserWarning: The default mode, 'constant', will be changed to 'reflect' in skimage 0.15.\n",
      "  warn(\"The default mode, 'constant', will be changed to 'reflect' in \"\n",
      "C:\\Users\\Admin\\Anaconda3\\lib\\site-packages\\skimage\\transform\\_warps.py:110: UserWarning: Anti-aliasing will be enabled by default in skimage 0.15 to avoid aliasing artifacts when down-sampling images.\n",
      "  warn(\"Anti-aliasing will be enabled by default in skimage 0.15 to \"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "------------------------------\n",
      "Creating and compiling model...\n",
      "------------------------------\n",
      "WARNING:tensorflow:From C:\\Users\\Admin\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
      "Instructions for updating:\n",
      "Colocations handled automatically by placer.\n",
      "------------------------------\n",
      "Fitting model...\n",
      "------------------------------\n",
      "Train on 1155 samples, validate on 289 samples\n",
      "Epoch 1/20\n",
      "1155/1155 [==============================] - 28s 24ms/step - loss: -0.6598 - dice_coef: 0.6598 - val_loss: -0.5496 - val_dice_coef: 0.5496\n",
      "Epoch 2/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.8656 - dice_coef: 0.8656 - val_loss: -0.7948 - val_dice_coef: 0.7948\n",
      "Epoch 3/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.8893 - dice_coef: 0.8893 - val_loss: -0.7885 - val_dice_coef: 0.7885\n",
      "Epoch 4/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9105 - dice_coef: 0.9105 - val_loss: -0.8283 - val_dice_coef: 0.8283\n",
      "Epoch 5/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9240 - dice_coef: 0.9240 - val_loss: -0.8433 - val_dice_coef: 0.8433\n",
      "Epoch 6/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9339 - dice_coef: 0.9339 - val_loss: -0.8622 - val_dice_coef: 0.8622\n",
      "Epoch 7/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9486 - dice_coef: 0.9486 - val_loss: -0.8153 - val_dice_coef: 0.8153\n",
      "Epoch 8/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9564 - dice_coef: 0.9564 - val_loss: -0.8305 - val_dice_coef: 0.8305\n",
      "Epoch 9/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9608 - dice_coef: 0.9608 - val_loss: -0.8910 - val_dice_coef: 0.8910\n",
      "Epoch 10/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9664 - dice_coef: 0.9664 - val_loss: -0.8900 - val_dice_coef: 0.8900 9s - loss: -0.9669 - - ETA -\n",
      "Epoch 11/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9699 - dice_coef: 0.9699 - val_loss: -0.9139 - val_dice_coef: 0.9139\n",
      "Epoch 12/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9718 - dice_coef: 0.9718 - val_loss: -0.9070 - val_dice_coef: 0.9070\n",
      "Epoch 13/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9698 - dice_coef: 0.9698 - val_loss: -0.9066 - val_dice_coef: 0.9066\n",
      "Epoch 14/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9734 - dice_coef: 0.9734 - val_loss: -0.9192 - val_dice_coef: 0.9192\n",
      "Epoch 15/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9734 - dice_coef: 0.9734 - val_loss: -0.8997 - val_dice_coef: 0.8997\n",
      "Epoch 16/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9723 - dice_coef: 0.9723 - val_loss: -0.9127 - val_dice_coef: 0.9127\n",
      "Epoch 17/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9781 - dice_coef: 0.9781 - val_loss: -0.9189 - val_dice_coef: 0.9189\n",
      "Epoch 18/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9591 - dice_coef: 0.9591 - val_loss: -0.8179 - val_dice_coef: 0.8179\n",
      "Epoch 19/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9296 - dice_coef: 0.9296 - val_loss: -0.8700 - val_dice_coef: 0.8700\n",
      "Epoch 20/20\n",
      "1155/1155 [==============================] - 13s 11ms/step - loss: -0.9587 - dice_coef: 0.9587 - val_loss: -0.8235 - val_dice_coef: 0.8235\n",
      "------------------------------\n",
      "Loading and preprocessing test data...\n",
      "------------------------------\n",
      "------------------------------\n",
      "Loading saved weights...\n",
      "------------------------------\n",
      "------------------------------\n",
      "Predicting masks on test data...\n",
      "------------------------------\n",
      "935/935 [==============================] - 5s 5ms/step\n",
      "------------------------------\n",
      "Saving predicted masks to files...\n",
      "------------------------------\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\Admin\\Anaconda3\\lib\\site-packages\\skimage\\util\\dtype.py:141: UserWarning: Possible precision loss when converting from float32 to uint8\n",
      "  .format(dtypeobj_in, dtypeobj_out))\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VNX5wPHvmz1kYckGQtgDsgmyKAoqKiqoFRU31Kq4UKwWrbUttv1Rta3V2k1Fa11wqxXFFVfctwrKIiBr2ElYkpBAFkL28/vj3IRhmEmGkFmSeT/PM8/M3Htn7pvJzH3vOfcsYoxBKaWUAogIdgBKKaVChyYFpZRSDTQpKKWUaqBJQSmlVANNCkoppRpoUlBKKdVAk4Jq00Skp4gYEYnyYdvrROTrI3jvrSIy3nn8GxF56mhiDRQRuVlE8kSkTERSRGSMiGxwnl8Y7PhUcGlSUCHDOchWiUiq2/LlzoG9Z3Aia5ox5j5jzI3BjqMpIhIN/B042xiTaIwpBO4FZjvP3wxuhCrYNCmoULMFmFL/RESGAPHBC6fNyQDigNUuy3q4PVdhTJOCCjUvANe4PL8WeN51AxFpLyLPi0iBiGwTkd+JSISzLlJE/ioie0RkM3Ceh9c+LSK7RGSHiPxRRCJ9CUxEfuzsr1BEfuu27m4R+Y/L87Ei8o2I7BORHBG5zlke68S33anCeVxEvCY9EblJRNaKSKmIrBGR4c7yASLyufP+q0XkApfXeNyHiPQD1jub7RORT0VkE9AbeNupPor15bNQbZcmBRVqFgHJzkEvErgc+I/bNo8A7bEHs9OwSWSqs+4m4HzgeGAkcInba58DaoC+zjZnA01W+4jIQOBfwI+BY4AUoJuXbbsD7ztxpgHDgOXO6geAfs6yvkBXYJaX97kUuNv5+5KBC4BCpwrobeBDIB34GfCiiPRvbB/GmGxgkLNNB2PMGcaYPsB24EdO9VFlU5+FauOMMXrTW0jcgK3AeOB3wJ+BCcBHQBRggJ5AJFAJDHR53U+Az53HnwLTXdad7bw2Clt1UgnEu6yfAnzmPL4O+NpLbLOAuS7PE4AqYLzz/G7gP87ju4A3PLyHAPuBPi7LTgK2eNnnAuA2D8tPAXYDES7LXnJiaHQfzmdogCj3zz3Y/3+9hcatyRYZSgXBC8CXQC/cqo6AVCAG2OaybBv2bBjsWXyO27p6PYBoYJeI1C+LcNvem0Pe1xizX0QKvWybCWzysDwNaAcsddm/YBPdkbzPMUCOMabOZVn9Z3Ck+1DqEJoUVMgxxmwTkS3AucANbqv3ANXYA/waZ1l3YIfzeBf2YIrLuno52JJCqjGm5gjD2gUMqH8iIu2wVUie5AAneFi+BzgADDLG7PCw3tP79PGwfCeQKSIRLomhO5DdjH0odQi9pqBC1Q3AGcaY/a4LjTG1wCvAn0QkSUR6AHdw8LrDK8AMEekmIh2BmS6v3YWth/+biCSLSISI9BGR03yI51XgfOcCcgy2Gae338+LwHgRuUxEopy+AMOcA/iTwD9EJB1ARLqKyDle3ucp4E4RGSFWX+fv/RZbRfQrEYkWkXHAj7DVW0e6D6UOoUlBhSRjzCZjzBIvq3+GPShuBr4G/gvMcdY9ia2LXwEsA153e+012OqnNcBe7MG+iw/xrAZucfa1y3ltrpdtt2NLOb8AirAXmYc6q38NbAQWiUgJ8DHQ38v7zAP+5OyzFHgT6GSMqcJedJ6ILRk8BlxjjFl3pPtQyp0Yo5PsKKWUsrSkoJRSqoHfkoKIzBGRfBFZ5WW9iMjDIrJRRFbWd8pRSikVPP4sKTyLbWfuzUQgy7lNw3YMUkopFUR+SwrGmC+xF9m8mQQ8b6xFQAcRafKCn1JKKf8JZj+FrhzaaSjXWbbLfUMRmYYtTZCQkDDi2GOPDUiASinVVixdunSPMSatqe2CmRTEwzKPTaGMMU8ATwCMHDnSLFniraWiUkopT0RkW9NbBbf1US6H9jzthu2pqZRSKkiCmRTmA9c4rZBGA8VOj1OllFJB4rfqIxF5CRgHpIpILvB77GBkGGMeB97D9vrcCJRzcOhjpZRSQeK3pGCMmdLEeoMdNuCoVVdXk5ubS0VFRUu8XasQFxdHt27diI6ODnYoSqk2pE2Mkpqbm0tSUhI9e/bEZbjgNssYQ2FhIbm5ufTq1SvY4Sil2pA2McxFRUUFKSkpYZEQAESElJSUsCoZKaUCo00kBSBsEkK9cPt7lVKB0Saqj5RSypPq2jq27tnP+rxSduw9wDmDOtMzNSHYYYU0TQotoLCwkDPPPBOA3bt3ExkZSVqa7Tj43XffERMT0+R7TJ06lZkzZ9K/vw57r9SRqq0zbCvcT3ZeKdl5Zc59KVv27Ke69mCf2AcXrOfq0T2YcWYWnRKa/l2GI00KLSAlJYXly5cDcPfdd5OYmMidd955yDb1k2JHRHiusXvmmWf8HqdSR6qyppb8kkp2l1Swp7SS2qOcfyUmMoK46Ehio+z9oY8jiI2yzyMiPFeP1tUZcvceYL1z0N+QV8r6vDI2FZRRVXNwyurMTvH0S0/izAEZ9MtIJCs9ifbx0fzri028sGgbry3NZfq4Ptwwthdx0Tp9tStNCn60ceNGLrzwQsaOHcu3337LO++8wz333MOyZcs4cOAAl19+ObNmzQJg7NixzJ49m8GDB5Oamsr06dN5//33adeuHW+99Rbp6elB/muUv1TX1lFWUUNZZQ2lzn1ZZfXBx859eVUt7WIiSYqLIikumqS4KBJj7eNkl2XtYiKbvOZkjKHkQA27SyrYVXyAvJIKdhfbg799bO8L91cF6FM4VExUxGHJIlKE7UXlHKiubdjumPZxZGUkcUpWKlnpifTLSKJveiIJsZ4PbfddNITrx/Tk/vfX8eCC9fxn0TZ+cXZ/Ljq+K5FeElG4aXNJ4Z63V7NmZ0mLvufAY5L5/Y8GNeu1a9as4ZlnnuHxxx8H4P7776dTp07U1NRw+umnc8kllzBw4MBDXlNcXMxpp53G/fffzx133MGcOXOYOXOmp7dXIaa2zlC4v5L8kkrySyvIK7GP80orKCitpLSi+pADfWlFDZUuZ7jeiEB8dCQHqmtp6mQ9QmhIFjaB2Mfx0ZHsKau0B/2SCiqqD99vSkIMGclxdG4fx9DMDnRpH0fn5Dgy2seRlhhLdGTzD5wGqKqpo6K6lkrnvqLa7XlNLZXVdQ33lTUHt6muNYzpm2rP/DOSyMpIJDnuyPvp9E1P4qlrR7FocyF/fm8td85bwdNfb+Guicdyar8mx4tr89pcUgg1ffr0YdSoUQ3PX3rpJZ5++mlqamrYuXMna9asOSwpxMfHM3HiRABGjBjBV199FdCY1eGMMewpqyKvpOKwg31+SQX5pfZgu6esitq6w4/aKQkxpCXFkhwXTXpSHL1To0iMiyIp1p7tJzac9UeRGBvt9vzg2X9dnaG8upbSCluSOHhfc8jzssoaSly2yS+toLyqlpSEGAZ3bc9ZAzMaDv6dk+PISI4jPTmW2KjwqUoZ3TuFN346hnd+2MWDC9ZxzZzvOCUrlbsmDmDgMcnBDi9o2lxSaO4Zvb8kJBxs6bBhwwYeeughvvvuOzp06MDVV1/tsa+B64XpyMhIampqAhKrsmf624vK2ZhfxsZ8W1e9Mb+MTflllFYe/n+oP9hnJMfRPyOJjOQ4MpJjSUuy9+nJ9gw7JqplWn9HRIhNIrFRdGnfIm8Z1iIihAuGHsM5gzJ4YeE2Hvl0I+c98hUXH9+NO8/pR5f28cEOMeDaXFIIZSUlJSQlJZGcnMyuXbtYsGABEyY0Njmd8peK6lo2F+xno8tBf2N+GVv27Keq9mC1SnpSLH3TE7loeFd6pybQuX28Xw72KrhioyK58ZTeXDoik8c+38gz32zlnZU7uWFsL6aP69OsaqrWSpNCAA0fPpyBAwcyePBgevfuzZgxY4IdUptWUV3Ljn0HyCkqJ3fvgUNKADl7yxvq5kWge6d29E1LZFz/NPqkJ9I3PZE+aYm0jw+fg4GC9u2iuevcAfz4pB78dcF6Hvt8E3MX5zDjjL5ceWKPsDgJEHOUTcwCzdMkO2vXrmXAgAFBiih4wvXvrldTW8eu4gpyisrJ2WsP/Paxvc8vrTxk+5ioCHqnJtiDfpo98PdNT6RXaoI2S1QerdpRzH3vreWbTYX0TGnH3y4bxogeHQMeR0V1LX96dy03ndKb7intmvUeIrLUGDOyqe20pKBCXnF5Ncty9rIqt5jtTgLIKTrA7pKKQy7qRgh0aR9PZqd4TuuXRreO7cjsFE9mp3ZkdmxHelKs1/bvSnkyuGt7XrzxRD5fX8Dv569mypOL+OulQ7lg6DEBi6GgtJJpLyzh++37GHRMMt1Tuvt1f5oUVEipqzNs3lPGsm37WLptL8u272VDflnD+vSkWDI7tWNUz44HD/od25HZqR2d28cRHdn2i/cqsESE049NZ2hmB6a/sJQZL33PloL9zDizr9/HIFu7q4Qbnl1MUXkV/7pqOBOHdPHr/kCTggqy/ZU1rMjZx7Lte50ksI/iA9UAtI+PZnj3DkwadgzDu3fkuMwOJHrplKSUv3VKiOGFG0/grtd/4B8fZ7NlTxn3Tz7Ob1WPH6/JY8bc70mOi+bV6SczuGtgmpvpL0wFjDF2iIKl2/Y2lALW7iqhvgYoKz2RiYM7M7x7R4b36Ejv1ASt7lEhJTYqkr9dOpQ+aYk8uGA9OXsP8MSPR5CSGNti+zDG8ORXm/nz++sY0rU9T14zkozkuBZ7/6ZoUlB+t72wnBcWbeWt5TsbLv4mxEQyrHsHbj29L8N7dOT4zI60b6ctfVToExFuOb0vPVMSuOOV5Vz42P+Yc+0osjKSjvq9q2rq+O0bPzBvaS7nDenCXy8dSnxMYBtBaFJQflFXZ/hyQwHPL9zGZ+vziRDhrAEZjMlKZUT3jvTvnKRjzahW7bzjutC1Yzw3PreEi//1DY9dNZxTspo/TEbR/iqm/2cp320pYsYZfbl9fL+glJQ1KbSAlhg6G2DOnDmce+65dO7c2W+x+ltJRTWvLsnlhUXb2LJnP6mJsfzsjCyuPKE7ndsHrgisVCAMy+zAm7eczI3PLeG6ZxZzzwWDuHp0jyN+nw15pdzw3BJ2l1Tw0BXDmDSsqx+i9Y0mhRbgy9DZvpgzZw7Dhw9vlUlh/e5Snl+4lTe+30F5VS3Du3fg9iuGMXFwl7Do8KPCV7eO7Zg3/SRmvPQ9v3tzFVv27Oc35w7wuST8RXYBt764jNjoSOZOG83w7oHvB+FKk4KfPffcczz66KNUVVVx8sknM3v2bOrq6pg6dSrLly/HGMO0adPIyMhg+fLlXH755cTHxx9RCSNYamrr+GhNHs8t3MqizUXEREUwaegxXHNST4Z004F5VPhIiovmyWtG8sd31/L011vYVrifh6443usQ3vWe+2Yr97y9mn4ZSTx93Si6dgj+WEttLym8PxN2/9Cy79l5CEy8/4hftmrVKt544w2++eYboqKimDZtGnPnzqVPnz7s2bOHH36wce7bt48OHTrwyCOPMHv2bIYNG9ay8bewPWWVvLw4h/8s2sau4gq6dohn5sRjuWxkps5mpcJWVGQEd18wiN5pCdw9fzWXPL6Qp68dyTEeDvTVtXXc+/YaXli0jfED0vnnFceHTHPr0Iiijfr4449ZvHgxI0fanuUHDhwgMzOTc845h/Xr13Pbbbdx7rnncvbZZwc50qYZY1iRW8zz32zlnZW7qKqt45SsVO6dNJgzjk3Xi8ZKOa45qSfdO7Xj1v9+z4WP/o+nrh3Jcd06NKwvLq/mlv8u4+uNe/jJqb351YRjQ+r30/aSQjPO6P3FGMP111/PH/7wh8PWrVy5kvfff5+HH36Y1157jSeeeCIIETZuf2UN/9u4h8+zC/hifQE79h0gISaSKSdk8uOTetI3PTHYISoVksb1T+e1m0/m+mcXc9m/F/LPy4cxYXAXtuzZzw3PLSanqJy/TD6Oy0ZlBjvUw7S9pBBCxo8fzyWXXMJtt91GamoqhYWF7N+/n/j4eOLi4rj00kvp1asX06dPByApKYnS0tKgxWuMYUN+GZ+vz+fz9QUs3lpEda0hISaSk/umcusZfTn/uC4khdEwwko1V//OSbx5yxhuen4J0/+zjGtP6sGby3cSIfDCDScyundKsEP0SJOCHw0ZMoTf//73jB8/nrq6OqKjo3n88ceJjIzkhhtuwBiDiPDAAw8AMHXqVG688caAXmguqy8NrC/gy2xbGgDol5HI1DG9GNcvjZE9O2kLIqWaIS0plrnTRnPnvBU8t3AbfdMTefrakfRISWj6xUGiQ2e3Ys35u40xZOcdLA0s2WZLA4mxUYzpm8K4/umc1i/N48UxpVTz1NUZvsguYETPjkGbsEeHzlYNjDEs2lzE/BU7+WJ9PjuL7RSgx3ZO4vqxvRjXL50RPTpqaUApP4mIsCOttgaaFNqwvJIKXl2ayytLcthWWE5ibBRj+6Yy48w0TuufFpbzzyqlGtdmkkJ9/Xy48FbtV11bx2fr8nllSQ6frS+gts5wYq9O3D4+i4mDu+gMY6p5qg/A7lXQZShEtcK+KDVVULoTOvSw868qr9pEUoiLi6OwsJCUlJSwSAzGGAoLC4mLOziW0JY9+3llSQ6vLs2loLSStKRYpp3am8tGZtIrNXQvaqkQVlcH2/4HK+fCmvlQWQKdesNZf4BjzwvNg6sxULID8tZA3irIWw35a2BPNtTVwOSnYcglwY4ypLWJpNCtWzdyc3MpKCgIdigBExcXR2pGF15flsvLi3P4dksRkRHC6f3TuHxUd07vn0aUzkKmmiN/nU0EK+dBSS7EJMKAC6D7aFj4KLx8FfQYC+f8CY4JYu/7ylLIX+sc/Nc4CWA1VBQf3KZ9JmQMgn4TYOXLsGKuJoUmtImkEB0dTa9evYIdRsCs2lHM04u389byLyitqKFHSjt+eU5/LhnRLaCTcSgfGQPL/wsLZ0P7btBlmD2YdhkGyceExhl3aR6setUeOHetAImEPmfAWfdA/3MhxpksfthVsOxZ+Ow+eGIcDJ0CZ/6f/Tv8qaocNn1iY6svBezbdnB9TBJkDITBkyF9IGQMhvQBEH+wJzGmzv4P9hdCQmj2EQgFbaJJajg4UFXLvKU5vLw4h9U7S4iNiuDcIV24bGQmJ/bqpDOUhaqyAnj7Nlj/rh1Dq64WCtbZAxRAQppNDl2GHkwU7bsFJlFU7Yd179qz582f2Zi6DIOhV9iDa2IjrWUqiuGrv8Gif9kEMmYGnDwDYluwl7sxkPMdLH8RVr9hq68kAlKybALIGATpg+x9h+5Nf2a7VsK/T4Hz/wkjp7ZcnK2Er01SNSm0Ah+tyePu+avZse8AA7skc8UJmUwa2lVnKgt1696F+TNsNceZs2D0TyEiwp715q2Cncth13J7X7AOTK19XbsUl9LEUPvYl4OeL+pqYcsXsOJlWPs2VO+3VSzHXQbHXQ5p/Y/s/fZuhY/vgdWvQ2JnW2oYOgUijqJBQ8lOWPGSLV0VboTodjDwQpusMk+E6GaWho2B2aMgqTNc907z42ulNCm0ATlF5dzz9ho+XptHv4xE7rlgMCf10WJvyKsohg/usme4nY+Di5+wVRmNqT5g68R3fu8kihVQsNZeHAWI72TPiGMS7Jl5hHOTSIiIch5HOMujPGwTaZPTmvlQthti28OgSXDcFdD9JJusjkbOd/Zv3rHElojO/hP0Ps3311dXwLp3bCKoL7X0GAPDroSBkyD26Ke6BOCzP8MXD8Av1tnkEEZCIimIyATgISASeMoYc7/b+h7AHCANKAKuNsbkNvae4ZAUqmrqePKrzTzy6QYiRLh9fBZTx/QiWi8ch74tX8KbP7UtYE75BZz6q+Y34ayusIlil1OiyF8LNZX2gFlXY8/6Ta29d31sap31dS7ra2xi6Dvelgj6TWj+Gbc3xsCq12zJoXi7vRZx1r2QmuV9+x1LbfJc9ZpNpu0zbUlj2BTb0qmlFayHR0+ACQ/A6Okt//4hLOhJQUQigWzgLCAXWAxMMcascdlmHvCOMeY5ETkDmGqM+XFj79vWk8I3m/bwf2+uYlPBfiYM6sysHw3UISdag+oD8MkfYNGj0KkPXPRvyBwV7KiCo7oCvv0XfPk3qDkAI2+AcTOhXSe7vnS3vY6x/L+wZz1ExcPAC2ypoOepR19qacq/xkJ0PNz4kX/3E2JCYZiLE4CNxpjNTkBzgUnAGpdtBgI/dx5/Brzpx3hCWn5pBfe9u5Y3l++ke6d2PHPdqFbTLT7s7fwe3phurwuMusm22IkJ474h0XEw9ucw7Gr4/D5Y/KRt4jrqJti9EjZ+bEs7maPhRw/DoIsgLjlw8Q2+GD65B/Zug45HPp9yW+fPpNAVyHF5nguc6LbNCmAytorpIiBJRFKMMYWuG4nINGAaQPfu3f0WcDDU1hle/HYbDy5YT2V1HTPOzOKn4/poz+PWoLYGvv67raNOSIerX4e+ZwY7qtCRmAbn/wNOmAYf/h989VdI7moTxtArIbVvcOKqTwqr34CxtwcnhhDmz6TgqamEe13VncBsEbkO+BLYAdQc9iJjngCeAFt91LJhBs+KnH389s0fWLWjhLF9U7l30iB6p+nENa3Cng3wxk9snfiQS+HcByE+uBOuh6z0AXD1q1CcC0ldjq5lUkvo2BO6jrTXMTQpHMafSSEXcJ1WqBuw03UDY8xO4GIAEUkEJhtjimnjisurefDDdbz47XbSEmOZfeXxnDekS1gM0dHq1dXB4qfgo1m2muSSZ+yZp2pa+27BjuCgwZNhwV02uXu7EB6m/JkUFgNZItILWwK4ArjSdQMRSQWKjDF1wF3YlkhtljGG15ft4L731rK3vIqpJ/fi52dl6UxmgWCMHcenusK2BoqMdbl3bvXLouIgMubwfgHFufDWLbD5c+h7FlzwCCR3Ccqfo47SoAthwW9g1esw7tfBjiak+C0pGGNqRORWYAG2SeocY8xqEbkXWGKMmQ+MA/4sIgZbfXSLv+IJtk0FZdz1+g98t6WI4d078PwNJzDomPbBDit8LJwNH/7uyF4T6ZY0Duy1y8//B4yYGhrDU6jmST7G9oNY9Sqc9iv9X7rw69hHxpj3gPfcls1yefwq8Ko/Ywi2ujrDs99s5YEP1hEfE8n9Fw/hspGZOixFIJUVwBd/sWP5jLsLairsUMq1lbbdf22VD8uqIDIaTv4ZpPQJ9l+kWsLgi+HdO2xfkM6Dgx1NyGgTA+KFqty95fxy3koWbi7kzGPT+fPkIaQn6YB1AffpH6C6HCb+ReuP1UEDJ8F7v7QXnDUpNNCk4AfGGOYtyeXed9ZgjOEvk4/j0pHd9EJyMOxaCcueh9E3a0JQh0pIhd7jbFI4c5ZWITl03IQWll9awY3PLeFXr61kcNdkPrj9VC4blakJIRiMsePxxHe09cZKuRs82Q7BvWNZsCMJGVpSaEHvrtzF7978gfKqWmadP5DrTu6p1w6Cae182PY1nPc37UOgPDv2PHgnxpYWuo0IdjQhQUsKLWBfeRUzXvqeW/67jO6d2vHujFO4fmwvTQjBVF1hWxulD4Th1wU7GhWq4jvY5sWrX7d9UJSWFI7WZ+vzmfnaSgrLqvjFWf24eVwfnQYzFCx6FPZth2vegkj9mqtGDL7YToK0fSH0HBPsaIJOfy3NtL+yhj++u5aXvttOv4xEnr52FIO7ar+DkFCyy47Q2f88eyFRqcb0n2gn8ln1miYFtPqoWb7bUsSEh75k7uLt/OTU3sy/dawmhFDyyb22n8HZfwh2JKo1iEmw80usedMOcugP1RV2gp/CTf55/xakSeEIVFTX8qd313D5EwsRhFd+chJ3nTtARzQNJTuWwor/2iao2slM+WrwZCgvtFOV+sMX99vb3KvsdKwhTJOCj3bsO8CPHvmaJ7/awpUndOf9205hVM9OwQ5LuapvgpqQBqf+MtjRqNak73iITbZjIbW0HUvhfw/Z+SMK1sH7of3d1KTgo5cX57CpoIxnp47iTxcNISFWL8eEnFWvQc63cMb/BXbSFtX6RcfBsefD2rftMCctpbrCTs+a1AWuegVOuQO+/w+seLnl9tHCNCn4aENeKT1SEhjXPwxnQ9u3HV7/CTyYBbtXBTsaz6rK7XDWnYfA8VcHOxrVGg2eDJXFdma4lvLFA7Z08KOHIa49jPsNdD8Z3vk5FGS33H5akCYFH63PK6VfRphNgFNeBAt+C4+MtLNU1VbBq1Ohan+wIzvcNw9DyQ47IXuwJ3FRrVPv0yC+ky1xtoQdS+F//7QnKVnj7bLIKJj8lC2ZzLvOzu0dYjQp+KCyppZtheX0y0gKdiiBUV1h60AfHgYLH4Uhl8CMZXD5C3ZSkvdCrE60OBe+/icMvFCbFKrmi4y2g+Stf//oT3xqKg9WG51z36Hr2neFi56A/NXwwcyj248faFLwweaC/dTWGbLaelKoq4XlL8EjI2xVTOaJcPP/4MLH7KxZvU61YwgtfxFWzA12tAd9fLedCP6se4MdiWrtBk+2I+pmf3B07/P5/U610UO22shd1ngYczssfRZ+CK3ZAzQp+CA7rxSg7VYfGQMbPoZ/nwpvTrcTrl/7Nlw1DzIGHbrtab+GHmPhnTtsqSHYcr6DH+bZeQ469gh2NKq163EyJHY+ulZIh1QbneV9uzN+Z0+83r4tpPovaFLwwYa8MiIjhF6pCcEOpeXt/B6enwQvToaqMrhkDtz4qS0VeBIRCZOfdKkTrQhouIeoq4P3f21/xGN/Hrw4VNsREQmDLoINH0JFM6aLr6mEN2+x38mz/9T4tpHR9vcWGQ3zrg3ub8mFJgUfrM8rpVdqArFRbegC5t6t8OoN8MQ4yFtlL9DestgWnyOa+FokHwMXPm5f9+FvAxGtZytfhp3LYPzdENtGS3Eq8AZPto0q1r175K/94gEoWAsXPGwH22tK+272t7T7h+D+llxoUvDBhrbU8mh/oe3g9chI+6U/5U6YsRxGT7eT1vuq39m2ymbxU7D6Tf/F601lmb2W0HUEHHd54Pev2q5uI6F99yNvhbRjmW3wMKyJaiPYfofmAAAbT0lEQVR3/SfASbcG77fkRpNCEyqqa9lWVE5Weiu/yFxZCl/9zbYo+vZxGHYlzPgezjyKjl5nzIKuI2H+z2zJI5C+/geU7YYJ9zddslHqSIjYkVM3fWZPonxR39ooMQPOaaLayJPxdx/8LRVtPvLXtyD9NTVhY34ZxtB6m6MWbYEPfgN/H2gHius5Fm5eaIu3yV2O7r2jYmydKAKvXm8ntw+Evdvgm0dgyKWQeUJg9qnCy+DJYGph7Vu+bV9fbfSjh3yrNnIXGQ2XPmMT0rzrWrZX9RHSpNCE+pZH/Tu3ouojY2Dz5/DSFHj4ePju35B1Ntz4CUx5CdKPbbl9dewBkx6xLS4+uafl3rcxH80CibBnV0r5Q+chkJLlWyukhmqjq2y1anN16A4X/gt2rYAP/6/573OUdACfJmTnlREdKfRIaQUtj6rK7cXXb/9tz1rapcKpd8LIG46+VNCYgZNg1I2wcLZttdTvHP/ta+v/7BDH4+6yF+mU8gcR22nz8/vt/Bzefj8N1Ubph3dSa45jz4PRP4VFj9lS/cALjv49j5CWFJqwIa+U3qmJRIfybGr7cuzZ898HwDu32670kx6Dn6+2baH9mRDqnf0nyBgCb0yH4h3+2Uddre0BmtwNTp7hn30oVW/QxYCxJyHefPEXp9rIx9ZGvhh/DxwzHN66NfDX6tCk0KTs/FKyQrHlkTGw7Rt4+cfw0HG2jr33aTD1ffjJV3D8VbYvQaBEx9k60ZpKeO1G/0xWsvxF2L0SzroHYtq1/Psr5Sqtn61G8tYKaccy2+DhaKuN3EXF2N8SwLypgbtW59Ck0Ijyqhpyig6E1kXm6gr4/kXb+/iZibDlS3vWfNtKuOx52yNTJDixpWbB+X+H7d/YC28tqXiHvVCeeaK9CKhUIAyeDLmLDz9jr6mEt25puWojdx17wqTZth/Ox3e3/Ps3QpNCIzbklQEh0vKoshQ+/SP8YxC89VOorbYtHe5Ya8+cO2QGO0Jr6BX2zOnLB2FzC8xitfN7eO0mWxqqKLZNUIOV9FT4GXSxvV/9xqHLv3wQ8tc0v7WRLwZeACdMg0WPwrr3/LMPDzQpNCJkxjyqqbItib78q22Cec18+OlCGHFdaFajnPugLTW8fhOU5R/56+tqYc18mDPR9rhe/x6Muglu+Ra6Dm/xcJXyqmMP6Dbq0Cqknd/DV3+HoVf6t1EFwNl/hC5D4c2b7bwmAaBJoREb8suIiYoIbssjY2yHlq1fwUWP2yalvU8L7bPlmAS45Bl7Zv/GT+wYRb6oKLFDdT88DF75MZTk2qL5HWtg4v3Qqbd/41bKk8GT7TAUBdn2BK2+tdEEP1QbuYuKtb+lulrbF6i22u+71KTQiOy8UvqkJRIZEcQD8Gf3wcq5cPpvbdVMa9F5MEz4M2z61I4Y2ZiiLXbojb8PhAW/geSucNkL8LPv4aRbPA89rFSgDLwQEFj9Onz5F5dqo46B2X9KH9vZNHexPWnyM+2n0Ijs3aWc0KtT8AJY9oL9Eh5/deuciH7EVHsh/NM/2gvg3UcfXFffemrRY7Z6SCJs/e3om7WKSIWW5C62z8CSObB/T2CqjdwNvtiWEgac7/ddaVLworSimp3FFcGbWGfjx3ac9T5nwPn/DO3qIm9E7BnVzu/tiKzTv4KYRHvGtegx23MzvqMd9nrUTYHpT6FUcwy+2M6rnNQlMNVGngwNzMCPmhS82JAfxJZHu3+AV66F9AFw6XN2XJTWKq69HR/p6XPghYugdLcdyC61v012x10emhfLlXI18EI7S9qZvw9ctVGQeE0KInKpMWaeiPQyxmwJZFChYEOwWh4V74AXL7MH06vmNX8E01DSdYRtRfHBr6HPmXDho/a+NZZ+VHhq1wl+8mWwowiIxkoKdwHzgNeAsKvkzc4rIy46gsyOATyLrSiGFy+1M6Bd/4GdzKatGD0dhk3Ri8ZKhbjGkkKRiHwG9BKR+e4rjTGBH6kpgLLzSslKTyIiUC2PaqvhlWtgz3q46tXD50ZuCzQhKBXyGksK52JLCC8AfwtMOKEjO6+UMX1TA7MzY+xF5c2f24Hs+pwemP0qpZSbxpLC08aYH4vIk8aYZo1XICITgIeASOApY8z9buu7A88BHZxtZhpjAtef24viA9XklVQG7iLzF3+xg72dNtMOZKeUUkHSWOe1ESLSA7hKRDqKSCfXW1NvLCKRwKPARGAgMEVEBrpt9jvgFWPM8cAVwGPN+zNaVkAvMi//L3x+n237PG6m//enlFKNaKyk8DjwAdAbWAq4Vq4bZ3ljTgA2GmM2A4jIXGASsMbtfeqb17QHdvocuR+tb0gKfi4pbPrMDmHRe5xtz6+tcZRSQea1pGCMedgYMwCYY4zpbYzp5XLzZRCarkCOy/NcZ5mru4GrRSQXeA/4mac3EpFpIrJERJYUFBT4sOujsyGvjISYSLp2iPffTvJW2wvLqf3tkNdRMf7bl1JK+ajJsY+MMTeLyFgRmQogIqki0suH9/Z02mvcnk8BnjXGdMNe2H5BRA6LyRjzhDFmpDFmZFpamg+7PjrZeaX0zUhC/HXmXrLTNj2NSYCrXtFWOUqpkNFkj2YR+T0wEugPPAPEAP8BxjTx0lzAdZD/bhxePXQDMAHAGLNQROKAVKAZ4y23nOy8Mk7v75Z8Nn1mu7l36m2bi2YMtvep/Y7sLL+y1HZOqyi2s6TpPMNKqRDiyzAXFwHHA8sAjDE7RcSXyvbFQJZTqtiBvZB8pds224EzgWdFZAAQB/i/fqgRRfur2FNWSf/Obn/ipk+gOAdik+Dbx6HWmSIvIspWAWUMOjRZJHU+/BpBbbUdviJ/jS0hdDkuMH+UUkr5yJekUGWMMSJiAETEp8kFjDE1InIrsADb3HSOMWa1iNwLLDHGzAd+ATwpIj/HVi1dZ4xxr2IKqPqJdQ4bCK9oC6T0tYO61VZD4SbIW2WvDeSttiN+/vDKwe3jOx2aJDIG2VEWN30CFzwCfccH8K9SSinf+JIUXhGRfwMdROQm4HrgSV/e3Olz8J7bslkuj9fQdDVUQHltjlq0+eAkL5HRkH6svQ255OA2B/ZC3honUTgJY9lzUF1+cJtTfwnDr/HzX6GUUs3TZFIwxvxVRM4CSrDXFWYZYz7ye2RBkp1XRlJsFJ2T4w4urKuzJYU+ZzT+4viO0HOMvbm+du8WmyBMrTNhh1JKhSZfh85eCcQ6j1f4KZaQkJ1XSlZG4qEtj0p3Qc2B5k0HGRFhZ05K6dNyQSqllJ802SRVRC4DvgMuBS4DvhWRSxp/VetkjCE7r/Twi8xFm+29zhGslGrjfCkp/BYYZYzJBxCRNOBj4FV/BhYMe8qq2FteTVa6JgWlVHhqsqQARNQnBEehj69rdTZ4G96iaBNExmifAqVUm+dLSeEDEVkAvOQ8vxx4338hBU92Yy2POvaEiMjAB6WUUgHkS+ujX4rIxcBY7NAVTxhj3vB7ZEGQnV9Gh3bRpCXFHrqiaItWHSmlwoIvw1z0At4zxrzuPI8XkZ7GmK3+Di7QsneX0i/dbcwjY2xJoddpwQtMKaUCxJdrA/OAOpfntc6yNqW+5VGWe9VR6W7b+ayTL2MAKqVU6+ZLUogyxlTVP3Eet7lxnvNLKympqPFwkVlbHimlwocvSaFARC6ofyIik4A9/gspOLK9tjzSpKCUCh++tD6aDrwoIrOd57nAj/0XUnCs391Iy6OIaGif6eFVSinVtvjS+mgTMFpEEgExxpT6P6zA25BXRkpCDCmJ7i2PNkHHHhDp64ggSinVevl8pDPGlPkzkGDLzvdwkRkOHR1VKaXauDbZM/lIGWPYmFd2+PUEY7SPglIqrGhSAHYVV1Ba6aHl0f4CqCqDTjrCqVIqPPgySmo7Efk/EXnSeZ4lIuf7P7TAWe+t5VHhJnuvJQWlVJjwpaTwDFAJnOQ8zwX+6LeIgqDR2dZAO64ppcKGL0mhjzHmL0A1gDHmAHYMpDYjO6+MtKRYOrRz65NXtBkkEjp0D05gSikVYL4khSoRiQcMgIj0wZYc2owNeaX0d686ApfmqNGBD0oppYLAl6Twe+ADIFNEXgQ+AX7l16gCqK7OkJ1Xps1RlVIK3zqvfSQiy4DR2Gqj24wxbWaYix37DnCgutZ7c9TME4MTmFJKBYEvrY8uAmqMMe8aY94BakTkQv+HFhheJ9YpL4TKEi0pKKXCik/VR8aY4vonxph92CqlNiE7z3bUzvLaHFX7KCilwodPczR7WNZmBgLakFdKl/ZxJMe5XUzW0VGVUmHIl6SwRET+LiJ9RKS3iPwDWOrvwAJlfV7p4aUEcJqjRmhzVKVUWPElKfwMqAJexs64VgHc4s+gAqW2zrAxv4x+6V5aHnXoDlFtbj4hpZTyypfWR/uBmQGIJeByisqprKk7vOUR2D4KWnWklAozXpOCiPzTGHO7iLyN03HNlTHmAg8va1UaWh519tActXAzHHdpEKJSSqngaayk8IJz/9dABBIM9Ukhy7366MBeqCzWkoJSKux4TQrGmKXO/RcikuY8LghUYIGQnVdG1w7xJMS6fQwNLY+0OapSKrx4vdAs1t0isgdYB2SLSIGIzApceP6VnVd6eKc10CGzlVJhq7HWR7cDY4BRxpgUY0xH4ERgjIj8PCDR+VFNbR2bC/Yffj0BnJKC2MHwlFIqjDSWFK4BphhjttQvMMZsBq521rVqWwvLqaqto1+6l6TQPhOiYgMfmFJKBVFjSSHa08B3znWFVj+W9AZvs62BTQopWnWklAo/jSWFqmauaxWy88oQgb4eO65pHwWlVHhqrEnqUBEp8bBcgDg/xRMw2fmlZHZsR3xM5KEryotsk1RNCkqpMNRYk9RIb+t8JSITgIeASOApY8z9buv/AZzuPG0HpBtjOhztfn2xIa/Uc9XRXucSiiYFpVQY8ttopyISCTwKnAXkAotFZL4xZk39NsaYn7ts/zPgeH/F46qqxrY8Gj8g4/CVhdpHQSkVvnwZEK+5TgA2GmM2G2OqgLnApEa2nwK85Md4Gmwt3E9NnfF+kRmBjj0DEYpSSoUUfyaFrkCOy/NcZ9lhRKQH0Av41I/xNGgY3sLbvMzJXSG61V82UUqpI+bPpCAelh02sJ7jCuBVY0ytxzcSmSYiS0RkSUHB0Y+0kZ1XRoRAnzQvSaFTr6Peh1JKtUb+TAq5QKbL827ATi/bXkEjVUfGmCeMMSONMSPT0tKOOrDs3aX0TEkgLtrDtfSiTZCi1xOUUuHJn0lhMZAlIr1EJAZ74J/vvpGI9Ac6Agv9GMshsvNLPVcdHdgH5YXa8kgpFbb8lhSMMTXArcACYC3wijFmtYjcKyKuczFMAeYaY7xVLbWoyppathWWa3NUpZTywG9NUgGMMe8B77ktm+X2/G5/xuBuc8F+ahtteYQ2R1VKhS1/Vh+FpOzGxjyq76OgzVGVUmEqLJNCVITQKzXh8JVFmyHpGIhpF/jAlFIqBIRhUiijZ2oCMVEe/vSizXo9QSkV1sIuKWzwNtsa6JDZSqmwF1ZJoaK6lm1FXloeVZTA/nwtKSilwlpYJYWN+WUY4+UiszZHVUqp8EoKB1seeRneAjQpKKXCWpglhTKiI4UeKR5aHhVusveaFJRSYSysksKGvFL6pCUSHemp5dEWSOwMMR4ShlJKhYmwSgp2zCMP1xNAm6MqpRRhlBT2V9aQU3SAfumNNEfVpKCUCnNhkxQ25pcBeC4pVJZB2W7to6CUCnthkxQabXmkzVGVUgoIo6QAkJWe6LnlkTZHVUopwM9DZ4eSS0dmcunITM8rNSkopRQQZiUFrwo3QUI6xHppmaSUUmFCkwLYPgpaSlBKKU0KgDZHVUophyaFqnIo3anNUZVSCk0K2hxVKaVcaFLQlkdKKdVAk4ImBaWUaqBJoXATtEuFuPbBjkQppYJOk4K2PFJKqQaaFLSPglJKNQjvpFB9AEpyNSkopZQjvJPC3q32PqVPUMNQSqlQEd5JoaHlUa/gxqGUUiFCkwJo9ZFSSjk0KcR3tDellFJhnhQKN0EnvZ6glFL1wjspaHNUpZQ6RPgmhZpKKM7RpKCUUi7CNyns3QYYbY6qlFIuwjcpFG2y91pSUEqpBmGcFLQ5qlJKuQvvpBDXXpujKqWUi/BOCp36gEiwI1FKqZDh16QgIhNEZL2IbBSRmV62uUxE1ojIahH5rz/jOUThJq06UkopN1H+emMRiQQeBc4CcoHFIjLfGLPGZZss4C5gjDFmr4ik+yueQ9RU2eaox10ekN0ppVRr4c+SwgnARmPMZmNMFTAXmOS2zU3Ao8aYvQDGmHw/xnPQvu1g6rSkoJRSbvyZFLoCOS7Pc51lrvoB/UTkfyKySEQmeHojEZkmIktEZElBQcHRR1bfHFX7KCil1CH8mRQ8XcE1bs+jgCxgHDAFeEpEOhz2ImOeMMaMNMaMTEtLO/rItDmqUkp55M+kkAtkujzvBuz0sM1bxphqY8wWYD02SfhX0WaITYZ2KX7flVJKtSb+TAqLgSwR6SUiMcAVwHy3bd4ETgcQkVRsddJmP8ZkFW22E+toc1SllDqE35KCMaYGuBVYAKwFXjHGrBaRe0XkAmezBUChiKwBPgN+aYwp9FdMDXTIbKWU8shvTVIBjDHvAe+5LZvl8tgAdzi3wKittq2PBk8O2C6VUqq1CL8ezfu2g6nVi8xKKeVB+CWFoi32XpujKqXUYcIwKeiQ2Uop5U0YJoXNEJMICS3Q30EppdqY8EwK2hxVKaU8CtOkoNcTlFLKk/BKCrU1sHerXk9QSikvwispFOdAXY0mBaWU8iK8koIOhKeUUo0Kz6SgfRSUUsqj8EsK0e0gMSPYkSilVEgKv6TQqbc2R1VKKS/CMCn0CnYUSikVssInKdTVOs1R9XqCUkp5Ez5JoTgXaqu05ZFSSjUifJKCNkdVSqkmaVJQSinVIHySQlJn6H8eJHUJdiRKKRWy/DodZ0g59jx7U0op5VX4lBSUUko1SZOCUkqpBpoUlFJKNdCkoJRSqoEmBaWUUg00KSillGqgSUEppVQDTQpKKaUaiDEm2DEcEREpALY18+WpwJ4WDKelaXxHR+M7eqEeo8bXfD2MMWlNbdTqksLREJElxpiRwY7DG43v6Gh8Ry/UY9T4/E+rj5RSSjXQpKCUUqpBuCWFJ4IdQBM0vqOj8R29UI9R4/OzsLqmoJRSqnHhVlJQSinVCE0KSimlGrTJpCAiE0RkvYhsFJGZHtbHisjLzvpvRaRnAGPLFJHPRGStiKwWkds8bDNORIpFZLlzmxWo+Jz9bxWRH5x9L/GwXkTkYefzWykiwwMYW3+Xz2W5iJSIyO1u2wT88xOROSKSLyKrXJZ1EpGPRGSDc9/Ry2uvdbbZICLXBii2B0VknfP/e0NEOnh5baPfBT/HeLeI7HD5P57r5bWN/t79GN/LLrFtFZHlXl4bkM+wxRhj2tQNiAQ2Ab2BGGAFMNBtm58CjzuPrwBeDmB8XYDhzuMkINtDfOOAd4L4GW4FUhtZfy7wPiDAaODbIP6vd2M75QT18wNOBYYDq1yW/QWY6TyeCTzg4XWdgM3OfUfncccAxHY2EOU8fsBTbL58F/wc493AnT58Bxr9vfsrPrf1fwNmBfMzbKlbWywpnABsNMZsNsZUAXOBSW7bTAKecx6/CpwpIhKI4Iwxu4wxy5zHpcBaoGsg9t2CJgHPG2sR0EFEgjH59ZnAJmNMc3u4txhjzJdAkdti1+/Zc8CFHl56DvCRMabIGLMX+AiY4O/YjDEfGmNqnKeLgG4tuc8j5eXz84Uvv/ej1lh8zrHjMuCllt5vMLTFpNAVyHF5nsvhB92GbZwfRjGQEpDoXDjVVscD33pYfZKIrBCR90VkUEADAwN8KCJLRWSah/W+fMaBcAXef4jB/PzqZRhjdoE9GQDSPWwTCp/l9diSnydNfRf87VanimuOl+q3UPj8TgHyjDEbvKwP9md4RNpiUvB0xu/e7taXbfxKRBKB14DbjTElbquXYatEhgKPAG8GMjZgjDFmODARuEVETnVbHwqfXwxwATDPw+pgf35HIqifpYj8FqgBXvSySVPfBX/6F9AHGAbswlbRuAv6dxGYQuOlhGB+hkesLSaFXCDT5Xk3YKe3bUQkCmhP84quzSIi0diE8KIx5nX39caYEmNMmfP4PSBaRFIDFZ8xZqdznw+8gS2iu/LlM/a3icAyY0ye+4pgf34u8uqr1Zz7fA/bBO2zdC5qnw9cZZzKb3c+fBf8xhiTZ4ypNcbUAU962XdQv4vO8eNi4GVv2wTzM2yOtpgUFgNZItLLOZu8Apjvts18oL6VxyXAp95+FC3NqX98GlhrjPm7l20611/jEJETsP+nwgDFlyAiSfWPsRckV7ltNh+4xmmFNBoorq8mCSCvZ2fB/PzcuH7PrgXe8rDNAuBsEenoVI+c7SzzKxGZAPwauMAYU+5lG1++C/6M0fU61UVe9u3L792fxgPrjDG5nlYG+zNslmBf6fbHDds6JhvbKuG3zrJ7sT8AgDhstcNG4DugdwBjG4st3q4Elju3c4HpwHRnm1uB1diWFIuAkwMYX29nvyucGOo/P9f4BHjU+Xx/AEYG+P/bDnuQb++yLKifHzZB7QKqsWevN2CvU30CbHDuOznbjgSecnnt9c53cSMwNUCxbcTWxdd/B+tb4x0DvNfYdyGAn98LzvdrJfZA38U9Ruf5Yb/3QMTnLH+2/nvnsm1QPsOWuukwF0oppRq0xeojpZRSzaRJQSmlVANNCkoppRpoUlBKKdVAk4JSSqkGmhSUciMitW4jsbbYyJsi0tN1pE2lQk1UsANQKgQdMMYMC3YQSgWDlhSU8pEzLv4DIvKdc+vrLO8hIp84A7d9IiLdneUZzlwFK5zbyc5bRYrIk2Ln0/hQROKD9kcp5UaTglKHi3erPrrcZV2JMeYEYDbwT2fZbOxQ4sdhB5Z72Fn+MPCFsQPzDcf2aAXIAh41xgwC9gGT/fz3KOUz7dGslBsRKTPGJHpYvhU4wxiz2RnUcLcxJkVE9mCHYKh2lu8yxqSKSAHQzRhT6fIePbHzJ2Q5z38NRBtj/uj/v0yppmlJQakjY7w89raNJ5Uuj2vRa3sqhGhSUOrIXO5yv9B5/A12dE6Aq4CvncefADcDiEikiCQHKkilmkvPUJQ6XLzbJOwfGGPqm6XGisi32BOqKc6yGcAcEfklUABMdZbfBjwhIjdgSwQ3Y0faVCpk6TUFpXzkXFMYaYzZE+xYlPIXrT5SSinVQEsKSimlGmhJQSmlVANNCkoppRpoUlBKKdVAk4JSSqkGmhSUUko1+H9L2FzeX77Q4gAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "if __name__ == '__main__':\n",
    "    train_and_predict()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.19"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}