Spaces:
Sleeping
Sleeping
File size: 35,925 Bytes
c0f21d6 8444121 c0f21d6 8444121 c0f21d6 f749037 c0f21d6 8444121 c0f21d6 8444121 c0f21d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from skimage.transform import resize\n",
"import numpy as np\n",
"from skimage.segmentation import mark_boundaries\n",
"from keras.models import Model\n",
"from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose\n",
"from keras.optimizers import Adam, SGD\n",
"from keras.callbacks import ModelCheckpoint\n",
"from keras import backend as K\n",
"from skimage.exposure import rescale_intensity\n",
"from skimage import io\n",
"from ..src.data.data_loader import load_train_data, load_test_data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"K.set_image_data_format('channels_last') # TF dimension ordering in this code\n",
"\n",
"img_rows = int(512/2)\n",
"img_cols = int(512/2)\n",
"smooth = 1.\n",
"#We divide here the number of rows and columns by two because we undersample our data (We take one pixel over two) "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def dice_coef(y_true, y_pred):\n",
" y_true_f = K.flatten(y_true)\n",
" y_pred_f = K.flatten(y_pred)\n",
" intersection = K.sum(y_true_f * y_pred_f)\n",
" return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)\n",
"\n",
"\n",
"def dice_coef_loss(y_true, y_pred):\n",
" return -dice_coef(y_true, y_pred)\n",
"\n",
"#The functions return our metric and loss"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def get_unet():\n",
" inputs = Input((img_rows, img_cols, 1))\n",
" conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)\n",
" conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)\n",
" pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)\n",
"\n",
" conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)\n",
" conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)\n",
" pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)\n",
"\n",
" conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)\n",
" conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)\n",
" pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)\n",
"\n",
" conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)\n",
" conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv4)\n",
" pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)\n",
"\n",
" conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)\n",
" conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)\n",
"\n",
" up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)\n",
" conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)\n",
" conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)\n",
"\n",
" up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)\n",
" conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(up7)\n",
" conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv7)\n",
"\n",
" up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)\n",
" conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(up8)\n",
" conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv8)\n",
"\n",
" up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)\n",
" conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(up9)\n",
" conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv9)\n",
"\n",
" conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)\n",
"\n",
" model = Model(inputs=[inputs], outputs=[conv10])\n",
"\n",
" model.compile(optimizer=Adam(lr=1e-3), loss=dice_coef_loss, metrics=[dice_coef])\n",
"\n",
" return model\n",
"\n",
"#The different layers in our neural network model (including convolutions, maxpooling and upsampling)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def preprocess(imgs):\n",
" imgs_p = np.ndarray((imgs.shape[0], img_rows, img_cols), dtype=np.uint8)\n",
" for i in range(imgs.shape[0]):\n",
" imgs_p[i] = resize(imgs[i], (img_cols, img_rows), preserve_range=True)\n",
"\n",
" imgs_p = imgs_p[..., np.newaxis]\n",
" return imgs_p\n",
"\n",
"#We adapt here our dataset samples dimension so that we can feed it to our network"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def train_and_predict():\n",
" print('-'*30)\n",
" print('Loading and preprocessing train data...')\n",
" print('-'*30)\n",
" imgs_train, imgs_mask_train = load_train_data()\n",
"\n",
" imgs_train = preprocess(imgs_train)\n",
" imgs_mask_train = preprocess(imgs_mask_train)\n",
"\n",
" imgs_train = imgs_train.astype('float32')\n",
" mean = np.mean(imgs_train) # mean for data centering\n",
" std = np.std(imgs_train) # std for data normalization\n",
"\n",
" imgs_train -= mean\n",
" imgs_train /= std\n",
" #Normalization of the train set\n",
"\n",
" imgs_mask_train = imgs_mask_train.astype('float32')\n",
"\n",
" print('-'*30)\n",
" print('Creating and compiling model...')\n",
" print('-'*30)\n",
" model = get_unet()\n",
" model_checkpoint = ModelCheckpoint('weights.h5', monitor='val_loss', save_best_only=True)\n",
" #Saving the weights and the loss of the best predictions we obtained\n",
"\n",
" print('-'*30)\n",
" print('Fitting model...')\n",
" print('-'*30)\n",
" history=model.fit(imgs_train, imgs_mask_train, batch_size=10, epochs=20, verbose=1, shuffle=True,\n",
" validation_split=0.2,\n",
" callbacks=[model_checkpoint])\n",
"\n",
" print('-'*30)\n",
" print('Loading and preprocessing test data...')\n",
" print('-'*30)\n",
" imgs_test, imgs_id_test = load_test_data()\n",
" imgs_test = preprocess(imgs_test)\n",
"\n",
" imgs_test = imgs_test.astype('float32')\n",
" imgs_test -= mean\n",
" imgs_test /= std\n",
" #Normalization of the test set\n",
"\n",
" print('-'*30)\n",
" print('Loading saved weights...')\n",
" print('-'*30)\n",
" model.load_weights('weights.h5')\n",
"\n",
" print('-'*30)\n",
" print('Predicting masks on test data...')\n",
" print('-'*30)\n",
" imgs_mask_test = model.predict(imgs_test, verbose=1)\n",
" np.save('imgs_mask_test.npy', imgs_mask_test)\n",
" print('-' * 30)\n",
" print('Saving predicted masks to files...')\n",
" print('-' * 30)\n",
" pred_dir = 'preds'\n",
" if not os.path.exists(pred_dir):\n",
" os.mkdir(pred_dir)\n",
"\n",
" for k in range(len(imgs_mask_test)):\n",
" a=rescale_intensity(imgs_test[k][:,:,0],out_range=(-1,1))\n",
" b=(imgs_mask_test[k][:,:,0]).astype('uint8')\n",
" io.imsave(os.path.join(pred_dir, str(k) + '_pred.png'),mark_boundaries(a,b))\n",
" #Saving our predictions in the directory 'preds'\n",
" plt.plot(history.history['dice_coef'])\n",
" plt.plot(history.history['val_dice_coef'])\n",
" plt.title('Model dice coeff')\n",
" plt.ylabel('Dice coeff')\n",
" plt.xlabel('Epoch')\n",
" plt.legend(['Train', 'Test'], loc='upper left')\n",
" plt.show()\n",
" #plotting our dice coeff results in function of the number of epochs"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"------------------------------\n",
"Loading and preprocessing train data...\n",
"------------------------------\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Admin\\Anaconda3\\lib\\site-packages\\skimage\\transform\\_warps.py:105: UserWarning: The default mode, 'constant', will be changed to 'reflect' in skimage 0.15.\n",
" warn(\"The default mode, 'constant', will be changed to 'reflect' in \"\n",
"C:\\Users\\Admin\\Anaconda3\\lib\\site-packages\\skimage\\transform\\_warps.py:110: UserWarning: Anti-aliasing will be enabled by default in skimage 0.15 to avoid aliasing artifacts when down-sampling images.\n",
" warn(\"Anti-aliasing will be enabled by default in skimage 0.15 to \"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"------------------------------\n",
"Creating and compiling model...\n",
"------------------------------\n",
"WARNING:tensorflow:From C:\\Users\\Admin\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Colocations handled automatically by placer.\n",
"------------------------------\n",
"Fitting model...\n",
"------------------------------\n",
"Train on 1155 samples, validate on 289 samples\n",
"Epoch 1/20\n",
"1155/1155 [==============================] - 28s 24ms/step - loss: -0.6598 - dice_coef: 0.6598 - val_loss: -0.5496 - val_dice_coef: 0.5496\n",
"Epoch 2/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.8656 - dice_coef: 0.8656 - val_loss: -0.7948 - val_dice_coef: 0.7948\n",
"Epoch 3/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.8893 - dice_coef: 0.8893 - val_loss: -0.7885 - val_dice_coef: 0.7885\n",
"Epoch 4/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9105 - dice_coef: 0.9105 - val_loss: -0.8283 - val_dice_coef: 0.8283\n",
"Epoch 5/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9240 - dice_coef: 0.9240 - val_loss: -0.8433 - val_dice_coef: 0.8433\n",
"Epoch 6/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9339 - dice_coef: 0.9339 - val_loss: -0.8622 - val_dice_coef: 0.8622\n",
"Epoch 7/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9486 - dice_coef: 0.9486 - val_loss: -0.8153 - val_dice_coef: 0.8153\n",
"Epoch 8/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9564 - dice_coef: 0.9564 - val_loss: -0.8305 - val_dice_coef: 0.8305\n",
"Epoch 9/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9608 - dice_coef: 0.9608 - val_loss: -0.8910 - val_dice_coef: 0.8910\n",
"Epoch 10/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9664 - dice_coef: 0.9664 - val_loss: -0.8900 - val_dice_coef: 0.8900 9s - loss: -0.9669 - - ETA -\n",
"Epoch 11/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9699 - dice_coef: 0.9699 - val_loss: -0.9139 - val_dice_coef: 0.9139\n",
"Epoch 12/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9718 - dice_coef: 0.9718 - val_loss: -0.9070 - val_dice_coef: 0.9070\n",
"Epoch 13/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9698 - dice_coef: 0.9698 - val_loss: -0.9066 - val_dice_coef: 0.9066\n",
"Epoch 14/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9734 - dice_coef: 0.9734 - val_loss: -0.9192 - val_dice_coef: 0.9192\n",
"Epoch 15/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9734 - dice_coef: 0.9734 - val_loss: -0.8997 - val_dice_coef: 0.8997\n",
"Epoch 16/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9723 - dice_coef: 0.9723 - val_loss: -0.9127 - val_dice_coef: 0.9127\n",
"Epoch 17/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9781 - dice_coef: 0.9781 - val_loss: -0.9189 - val_dice_coef: 0.9189\n",
"Epoch 18/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9591 - dice_coef: 0.9591 - val_loss: -0.8179 - val_dice_coef: 0.8179\n",
"Epoch 19/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9296 - dice_coef: 0.9296 - val_loss: -0.8700 - val_dice_coef: 0.8700\n",
"Epoch 20/20\n",
"1155/1155 [==============================] - 13s 11ms/step - loss: -0.9587 - dice_coef: 0.9587 - val_loss: -0.8235 - val_dice_coef: 0.8235\n",
"------------------------------\n",
"Loading and preprocessing test data...\n",
"------------------------------\n",
"------------------------------\n",
"Loading saved weights...\n",
"------------------------------\n",
"------------------------------\n",
"Predicting masks on test data...\n",
"------------------------------\n",
"935/935 [==============================] - 5s 5ms/step\n",
"------------------------------\n",
"Saving predicted masks to files...\n",
"------------------------------\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Admin\\Anaconda3\\lib\\site-packages\\skimage\\util\\dtype.py:141: UserWarning: Possible precision loss when converting from float32 to uint8\n",
" .format(dtypeobj_in, dtypeobj_out))\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VNX5wPHvmz1kYckGQtgDsgmyKAoqKiqoFRU31Kq4UKwWrbUttv1Rta3V2k1Fa11wqxXFFVfctwrKIiBr2ElYkpBAFkL28/vj3IRhmEmGkFmSeT/PM8/M3Htn7pvJzH3vOfcsYoxBKaWUAogIdgBKKaVChyYFpZRSDTQpKKWUaqBJQSmlVANNCkoppRpoUlBKKdVAk4Jq00Skp4gYEYnyYdvrROTrI3jvrSIy3nn8GxF56mhiDRQRuVlE8kSkTERSRGSMiGxwnl8Y7PhUcGlSUCHDOchWiUiq2/LlzoG9Z3Aia5ox5j5jzI3BjqMpIhIN/B042xiTaIwpBO4FZjvP3wxuhCrYNCmoULMFmFL/RESGAPHBC6fNyQDigNUuy3q4PVdhTJOCCjUvANe4PL8WeN51AxFpLyLPi0iBiGwTkd+JSISzLlJE/ioie0RkM3Ceh9c+LSK7RGSHiPxRRCJ9CUxEfuzsr1BEfuu27m4R+Y/L87Ei8o2I7BORHBG5zlke68S33anCeVxEvCY9EblJRNaKSKmIrBGR4c7yASLyufP+q0XkApfXeNyHiPQD1jub7RORT0VkE9AbeNupPor15bNQbZcmBRVqFgHJzkEvErgc+I/bNo8A7bEHs9OwSWSqs+4m4HzgeGAkcInba58DaoC+zjZnA01W+4jIQOBfwI+BY4AUoJuXbbsD7ztxpgHDgOXO6geAfs6yvkBXYJaX97kUuNv5+5KBC4BCpwrobeBDIB34GfCiiPRvbB/GmGxgkLNNB2PMGcaYPsB24EdO9VFlU5+FauOMMXrTW0jcgK3AeOB3wJ+BCcBHQBRggJ5AJFAJDHR53U+Az53HnwLTXdad7bw2Clt1UgnEu6yfAnzmPL4O+NpLbLOAuS7PE4AqYLzz/G7gP87ju4A3PLyHAPuBPi7LTgK2eNnnAuA2D8tPAXYDES7LXnJiaHQfzmdogCj3zz3Y/3+9hcatyRYZSgXBC8CXQC/cqo6AVCAG2OaybBv2bBjsWXyO27p6PYBoYJeI1C+LcNvem0Pe1xizX0QKvWybCWzysDwNaAcsddm/YBPdkbzPMUCOMabOZVn9Z3Ck+1DqEJoUVMgxxmwTkS3AucANbqv3ANXYA/waZ1l3YIfzeBf2YIrLuno52JJCqjGm5gjD2gUMqH8iIu2wVUie5AAneFi+BzgADDLG7PCw3tP79PGwfCeQKSIRLomhO5DdjH0odQi9pqBC1Q3AGcaY/a4LjTG1wCvAn0QkSUR6AHdw8LrDK8AMEekmIh2BmS6v3YWth/+biCSLSISI9BGR03yI51XgfOcCcgy2Gae338+LwHgRuUxEopy+AMOcA/iTwD9EJB1ARLqKyDle3ucp4E4RGSFWX+fv/RZbRfQrEYkWkXHAj7DVW0e6D6UOoUlBhSRjzCZjzBIvq3+GPShuBr4G/gvMcdY9ia2LXwEsA153e+012OqnNcBe7MG+iw/xrAZucfa1y3ltrpdtt2NLOb8AirAXmYc6q38NbAQWiUgJ8DHQ38v7zAP+5OyzFHgT6GSMqcJedJ6ILRk8BlxjjFl3pPtQyp0Yo5PsKKWUsrSkoJRSqoHfkoKIzBGRfBFZ5WW9iMjDIrJRRFbWd8pRSikVPP4sKTyLbWfuzUQgy7lNw3YMUkopFUR+SwrGmC+xF9m8mQQ8b6xFQAcRafKCn1JKKf8JZj+FrhzaaSjXWbbLfUMRmYYtTZCQkDDi2GOPDUiASinVVixdunSPMSatqe2CmRTEwzKPTaGMMU8ATwCMHDnSLFniraWiUkopT0RkW9NbBbf1US6H9jzthu2pqZRSKkiCmRTmA9c4rZBGA8VOj1OllFJB4rfqIxF5CRgHpIpILvB77GBkGGMeB97D9vrcCJRzcOhjpZRSQeK3pGCMmdLEeoMdNuCoVVdXk5ubS0VFRUu8XasQFxdHt27diI6ODnYoSqk2pE2Mkpqbm0tSUhI9e/bEZbjgNssYQ2FhIbm5ufTq1SvY4Sil2pA2McxFRUUFKSkpYZEQAESElJSUsCoZKaUCo00kBSBsEkK9cPt7lVKB0Saqj5RSypPq2jq27tnP+rxSduw9wDmDOtMzNSHYYYU0TQotoLCwkDPPPBOA3bt3ExkZSVqa7Tj43XffERMT0+R7TJ06lZkzZ9K/vw57r9SRqq0zbCvcT3ZeKdl5Zc59KVv27Ke69mCf2AcXrOfq0T2YcWYWnRKa/l2GI00KLSAlJYXly5cDcPfdd5OYmMidd955yDb1k2JHRHiusXvmmWf8HqdSR6qyppb8kkp2l1Swp7SS2qOcfyUmMoK46Ehio+z9oY8jiI2yzyMiPFeP1tUZcvceYL1z0N+QV8r6vDI2FZRRVXNwyurMTvH0S0/izAEZ9MtIJCs9ifbx0fzri028sGgbry3NZfq4Ptwwthdx0Tp9tStNCn60ceNGLrzwQsaOHcu3337LO++8wz333MOyZcs4cOAAl19+ObNmzQJg7NixzJ49m8GDB5Oamsr06dN5//33adeuHW+99Rbp6elB/muUv1TX1lFWUUNZZQ2lzn1ZZfXBx859eVUt7WIiSYqLIikumqS4KBJj7eNkl2XtYiKbvOZkjKHkQA27SyrYVXyAvJIKdhfbg799bO8L91cF6FM4VExUxGHJIlKE7UXlHKiubdjumPZxZGUkcUpWKlnpifTLSKJveiIJsZ4PbfddNITrx/Tk/vfX8eCC9fxn0TZ+cXZ/Ljq+K5FeElG4aXNJ4Z63V7NmZ0mLvufAY5L5/Y8GNeu1a9as4ZlnnuHxxx8H4P7776dTp07U1NRw+umnc8kllzBw4MBDXlNcXMxpp53G/fffzx133MGcOXOYOXOmp7dXIaa2zlC4v5L8kkrySyvIK7GP80orKCitpLSi+pADfWlFDZUuZ7jeiEB8dCQHqmtp6mQ9QmhIFjaB2Mfx0ZHsKau0B/2SCiqqD99vSkIMGclxdG4fx9DMDnRpH0fn5Dgy2seRlhhLdGTzD5wGqKqpo6K6lkrnvqLa7XlNLZXVdQ33lTUHt6muNYzpm2rP/DOSyMpIJDnuyPvp9E1P4qlrR7FocyF/fm8td85bwdNfb+Guicdyar8mx4tr89pcUgg1ffr0YdSoUQ3PX3rpJZ5++mlqamrYuXMna9asOSwpxMfHM3HiRABGjBjBV199FdCY1eGMMewpqyKvpOKwg31+SQX5pfZgu6esitq6w4/aKQkxpCXFkhwXTXpSHL1To0iMiyIp1p7tJzac9UeRGBvt9vzg2X9dnaG8upbSCluSOHhfc8jzssoaSly2yS+toLyqlpSEGAZ3bc9ZAzMaDv6dk+PISI4jPTmW2KjwqUoZ3TuFN346hnd+2MWDC9ZxzZzvOCUrlbsmDmDgMcnBDi9o2lxSaO4Zvb8kJBxs6bBhwwYeeughvvvuOzp06MDVV1/tsa+B64XpyMhIampqAhKrsmf624vK2ZhfxsZ8W1e9Mb+MTflllFYe/n+oP9hnJMfRPyOJjOQ4MpJjSUuy9+nJ9gw7JqplWn9HRIhNIrFRdGnfIm8Z1iIihAuGHsM5gzJ4YeE2Hvl0I+c98hUXH9+NO8/pR5f28cEOMeDaXFIIZSUlJSQlJZGcnMyuXbtYsGABEyY0Njmd8peK6lo2F+xno8tBf2N+GVv27Keq9mC1SnpSLH3TE7loeFd6pybQuX28Xw72KrhioyK58ZTeXDoik8c+38gz32zlnZU7uWFsL6aP69OsaqrWSpNCAA0fPpyBAwcyePBgevfuzZgxY4IdUptWUV3Ljn0HyCkqJ3fvgUNKADl7yxvq5kWge6d29E1LZFz/NPqkJ9I3PZE+aYm0jw+fg4GC9u2iuevcAfz4pB78dcF6Hvt8E3MX5zDjjL5ceWKPsDgJEHOUTcwCzdMkO2vXrmXAgAFBiih4wvXvrldTW8eu4gpyisrJ2WsP/Paxvc8vrTxk+5ioCHqnJtiDfpo98PdNT6RXaoI2S1QerdpRzH3vreWbTYX0TGnH3y4bxogeHQMeR0V1LX96dy03ndKb7intmvUeIrLUGDOyqe20pKBCXnF5Ncty9rIqt5jtTgLIKTrA7pKKQy7qRgh0aR9PZqd4TuuXRreO7cjsFE9mp3ZkdmxHelKs1/bvSnkyuGt7XrzxRD5fX8Dv569mypOL+OulQ7lg6DEBi6GgtJJpLyzh++37GHRMMt1Tuvt1f5oUVEipqzNs3lPGsm37WLptL8u272VDflnD+vSkWDI7tWNUz44HD/od25HZqR2d28cRHdn2i/cqsESE049NZ2hmB6a/sJQZL33PloL9zDizr9/HIFu7q4Qbnl1MUXkV/7pqOBOHdPHr/kCTggqy/ZU1rMjZx7Lte50ksI/iA9UAtI+PZnj3DkwadgzDu3fkuMwOJHrplKSUv3VKiOGFG0/grtd/4B8fZ7NlTxn3Tz7Ob1WPH6/JY8bc70mOi+bV6SczuGtgmpvpL0wFjDF2iIKl2/Y2lALW7iqhvgYoKz2RiYM7M7x7R4b36Ejv1ASt7lEhJTYqkr9dOpQ+aYk8uGA9OXsP8MSPR5CSGNti+zDG8ORXm/nz++sY0rU9T14zkozkuBZ7/6ZoUlB+t72wnBcWbeWt5TsbLv4mxEQyrHsHbj29L8N7dOT4zI60b6ctfVToExFuOb0vPVMSuOOV5Vz42P+Yc+0osjKSjvq9q2rq+O0bPzBvaS7nDenCXy8dSnxMYBtBaFJQflFXZ/hyQwHPL9zGZ+vziRDhrAEZjMlKZUT3jvTvnKRjzahW7bzjutC1Yzw3PreEi//1DY9dNZxTspo/TEbR/iqm/2cp320pYsYZfbl9fL+glJQ1KbSAlhg6G2DOnDmce+65dO7c2W+x+ltJRTWvLsnlhUXb2LJnP6mJsfzsjCyuPKE7ndsHrgisVCAMy+zAm7eczI3PLeG6ZxZzzwWDuHp0jyN+nw15pdzw3BJ2l1Tw0BXDmDSsqx+i9Y0mhRbgy9DZvpgzZw7Dhw9vlUlh/e5Snl+4lTe+30F5VS3Du3fg9iuGMXFwl7Do8KPCV7eO7Zg3/SRmvPQ9v3tzFVv27Oc35w7wuST8RXYBt764jNjoSOZOG83w7oHvB+FKk4KfPffcczz66KNUVVVx8sknM3v2bOrq6pg6dSrLly/HGMO0adPIyMhg+fLlXH755cTHxx9RCSNYamrr+GhNHs8t3MqizUXEREUwaegxXHNST4Z004F5VPhIiovmyWtG8sd31/L011vYVrifh6443usQ3vWe+2Yr97y9mn4ZSTx93Si6dgj+WEttLym8PxN2/9Cy79l5CEy8/4hftmrVKt544w2++eYboqKimDZtGnPnzqVPnz7s2bOHH36wce7bt48OHTrwyCOPMHv2bIYNG9ay8bewPWWVvLw4h/8s2sau4gq6dohn5sRjuWxkps5mpcJWVGQEd18wiN5pCdw9fzWXPL6Qp68dyTEeDvTVtXXc+/YaXli0jfED0vnnFceHTHPr0Iiijfr4449ZvHgxI0fanuUHDhwgMzOTc845h/Xr13Pbbbdx7rnncvbZZwc50qYZY1iRW8zz32zlnZW7qKqt45SsVO6dNJgzjk3Xi8ZKOa45qSfdO7Xj1v9+z4WP/o+nrh3Jcd06NKwvLq/mlv8u4+uNe/jJqb351YRjQ+r30/aSQjPO6P3FGMP111/PH/7wh8PWrVy5kvfff5+HH36Y1157jSeeeCIIETZuf2UN/9u4h8+zC/hifQE79h0gISaSKSdk8uOTetI3PTHYISoVksb1T+e1m0/m+mcXc9m/F/LPy4cxYXAXtuzZzw3PLSanqJy/TD6Oy0ZlBjvUw7S9pBBCxo8fzyWXXMJtt91GamoqhYWF7N+/n/j4eOLi4rj00kvp1asX06dPByApKYnS0tKgxWuMYUN+GZ+vz+fz9QUs3lpEda0hISaSk/umcusZfTn/uC4khdEwwko1V//OSbx5yxhuen4J0/+zjGtP6sGby3cSIfDCDScyundKsEP0SJOCHw0ZMoTf//73jB8/nrq6OqKjo3n88ceJjIzkhhtuwBiDiPDAAw8AMHXqVG688caAXmguqy8NrC/gy2xbGgDol5HI1DG9GNcvjZE9O2kLIqWaIS0plrnTRnPnvBU8t3AbfdMTefrakfRISWj6xUGiQ2e3Ys35u40xZOcdLA0s2WZLA4mxUYzpm8K4/umc1i/N48UxpVTz1NUZvsguYETPjkGbsEeHzlYNjDEs2lzE/BU7+WJ9PjuL7RSgx3ZO4vqxvRjXL50RPTpqaUApP4mIsCOttgaaFNqwvJIKXl2ayytLcthWWE5ibBRj+6Yy48w0TuufFpbzzyqlGtdmkkJ9/Xy48FbtV11bx2fr8nllSQ6frS+gts5wYq9O3D4+i4mDu+gMY6p5qg/A7lXQZShEtcK+KDVVULoTOvSw868qr9pEUoiLi6OwsJCUlJSwSAzGGAoLC4mLOziW0JY9+3llSQ6vLs2loLSStKRYpp3am8tGZtIrNXQvaqkQVlcH2/4HK+fCmvlQWQKdesNZf4BjzwvNg6sxULID8tZA3irIWw35a2BPNtTVwOSnYcglwY4ypLWJpNCtWzdyc3MpKCgIdigBExcXR2pGF15flsvLi3P4dksRkRHC6f3TuHxUd07vn0aUzkKmmiN/nU0EK+dBSS7EJMKAC6D7aFj4KLx8FfQYC+f8CY4JYu/7ylLIX+sc/Nc4CWA1VBQf3KZ9JmQMgn4TYOXLsGKuJoUmtImkEB0dTa9evYIdRsCs2lHM04u389byLyitqKFHSjt+eU5/LhnRLaCTcSgfGQPL/wsLZ0P7btBlmD2YdhkGyceExhl3aR6setUeOHetAImEPmfAWfdA/3MhxpksfthVsOxZ+Ow+eGIcDJ0CZ/6f/Tv8qaocNn1iY6svBezbdnB9TBJkDITBkyF9IGQMhvQBEH+wJzGmzv4P9hdCQmj2EQgFbaJJajg4UFXLvKU5vLw4h9U7S4iNiuDcIV24bGQmJ/bqpDOUhaqyAnj7Nlj/rh1Dq64WCtbZAxRAQppNDl2GHkwU7bsFJlFU7Yd179qz582f2Zi6DIOhV9iDa2IjrWUqiuGrv8Gif9kEMmYGnDwDYluwl7sxkPMdLH8RVr9hq68kAlKybALIGATpg+x9h+5Nf2a7VsK/T4Hz/wkjp7ZcnK2Er01SNSm0Ah+tyePu+avZse8AA7skc8UJmUwa2lVnKgt1696F+TNsNceZs2D0TyEiwp715q2Cncth13J7X7AOTK19XbsUl9LEUPvYl4OeL+pqYcsXsOJlWPs2VO+3VSzHXQbHXQ5p/Y/s/fZuhY/vgdWvQ2JnW2oYOgUijqJBQ8lOWPGSLV0VboTodjDwQpusMk+E6GaWho2B2aMgqTNc907z42ulNCm0ATlF5dzz9ho+XptHv4xE7rlgMCf10WJvyKsohg/usme4nY+Di5+wVRmNqT5g68R3fu8kihVQsNZeHAWI72TPiGMS7Jl5hHOTSIiIch5HOMujPGwTaZPTmvlQthti28OgSXDcFdD9JJusjkbOd/Zv3rHElojO/hP0Ps3311dXwLp3bCKoL7X0GAPDroSBkyD26Ke6BOCzP8MXD8Av1tnkEEZCIimIyATgISASeMoYc7/b+h7AHCANKAKuNsbkNvae4ZAUqmrqePKrzTzy6QYiRLh9fBZTx/QiWi8ch74tX8KbP7UtYE75BZz6q+Y34ayusIlil1OiyF8LNZX2gFlXY8/6Ta29d31sap31dS7ra2xi6Dvelgj6TWj+Gbc3xsCq12zJoXi7vRZx1r2QmuV9+x1LbfJc9ZpNpu0zbUlj2BTb0qmlFayHR0+ACQ/A6Okt//4hLOhJQUQigWzgLCAXWAxMMcascdlmHvCOMeY5ETkDmGqM+XFj79vWk8I3m/bwf2+uYlPBfiYM6sysHw3UISdag+oD8MkfYNGj0KkPXPRvyBwV7KiCo7oCvv0XfPk3qDkAI2+AcTOhXSe7vnS3vY6x/L+wZz1ExcPAC2ypoOepR19qacq/xkJ0PNz4kX/3E2JCYZiLE4CNxpjNTkBzgUnAGpdtBgI/dx5/Brzpx3hCWn5pBfe9u5Y3l++ke6d2PHPdqFbTLT7s7fwe3phurwuMusm22IkJ474h0XEw9ucw7Gr4/D5Y/KRt4jrqJti9EjZ+bEs7maPhRw/DoIsgLjlw8Q2+GD65B/Zug45HPp9yW+fPpNAVyHF5nguc6LbNCmAytorpIiBJRFKMMYWuG4nINGAaQPfu3f0WcDDU1hle/HYbDy5YT2V1HTPOzOKn4/poz+PWoLYGvv67raNOSIerX4e+ZwY7qtCRmAbn/wNOmAYf/h989VdI7moTxtArIbVvcOKqTwqr34CxtwcnhhDmz6TgqamEe13VncBsEbkO+BLYAdQc9iJjngCeAFt91LJhBs+KnH389s0fWLWjhLF9U7l30iB6p+nENa3Cng3wxk9snfiQS+HcByE+uBOuh6z0AXD1q1CcC0ldjq5lUkvo2BO6jrTXMTQpHMafSSEXcJ1WqBuw03UDY8xO4GIAEUkEJhtjimnjisurefDDdbz47XbSEmOZfeXxnDekS1gM0dHq1dXB4qfgo1m2muSSZ+yZp2pa+27BjuCgwZNhwV02uXu7EB6m/JkUFgNZItILWwK4ArjSdQMRSQWKjDF1wF3YlkhtljGG15ft4L731rK3vIqpJ/fi52dl6UxmgWCMHcenusK2BoqMdbl3bvXLouIgMubwfgHFufDWLbD5c+h7FlzwCCR3Ccqfo47SoAthwW9g1esw7tfBjiak+C0pGGNqRORWYAG2SeocY8xqEbkXWGKMmQ+MA/4sIgZbfXSLv+IJtk0FZdz1+g98t6WI4d078PwNJzDomPbBDit8LJwNH/7uyF4T6ZY0Duy1y8//B4yYGhrDU6jmST7G9oNY9Sqc9iv9X7rw69hHxpj3gPfcls1yefwq8Ko/Ywi2ujrDs99s5YEP1hEfE8n9Fw/hspGZOixFIJUVwBd/sWP5jLsLairsUMq1lbbdf22VD8uqIDIaTv4ZpPQJ9l+kWsLgi+HdO2xfkM6Dgx1NyGgTA+KFqty95fxy3koWbi7kzGPT+fPkIaQn6YB1AffpH6C6HCb+ReuP1UEDJ8F7v7QXnDUpNNCk4AfGGOYtyeXed9ZgjOEvk4/j0pHd9EJyMOxaCcueh9E3a0JQh0pIhd7jbFI4c5ZWITl03IQWll9awY3PLeFXr61kcNdkPrj9VC4blakJIRiMsePxxHe09cZKuRs82Q7BvWNZsCMJGVpSaEHvrtzF7978gfKqWmadP5DrTu6p1w6Cae182PY1nPc37UOgPDv2PHgnxpYWuo0IdjQhQUsKLWBfeRUzXvqeW/67jO6d2vHujFO4fmwvTQjBVF1hWxulD4Th1wU7GhWq4jvY5sWrX7d9UJSWFI7WZ+vzmfnaSgrLqvjFWf24eVwfnQYzFCx6FPZth2vegkj9mqtGDL7YToK0fSH0HBPsaIJOfy3NtL+yhj++u5aXvttOv4xEnr52FIO7ar+DkFCyy47Q2f88eyFRqcb0n2gn8ln1miYFtPqoWb7bUsSEh75k7uLt/OTU3sy/dawmhFDyyb22n8HZfwh2JKo1iEmw80usedMOcugP1RV2gp/CTf55/xakSeEIVFTX8qd313D5EwsRhFd+chJ3nTtARzQNJTuWwor/2iao2slM+WrwZCgvtFOV+sMX99vb3KvsdKwhTJOCj3bsO8CPHvmaJ7/awpUndOf9205hVM9OwQ5LuapvgpqQBqf+MtjRqNak73iITbZjIbW0HUvhfw/Z+SMK1sH7of3d1KTgo5cX57CpoIxnp47iTxcNISFWL8eEnFWvQc63cMb/BXbSFtX6RcfBsefD2rftMCctpbrCTs+a1AWuegVOuQO+/w+seLnl9tHCNCn4aENeKT1SEhjXPwxnQ9u3HV7/CTyYBbtXBTsaz6rK7XDWnYfA8VcHOxrVGg2eDJXFdma4lvLFA7Z08KOHIa49jPsNdD8Z3vk5FGS33H5akCYFH63PK6VfRphNgFNeBAt+C4+MtLNU1VbBq1Ohan+wIzvcNw9DyQ47IXuwJ3FRrVPv0yC+ky1xtoQdS+F//7QnKVnj7bLIKJj8lC2ZzLvOzu0dYjQp+KCyppZtheX0y0gKdiiBUV1h60AfHgYLH4Uhl8CMZXD5C3ZSkvdCrE60OBe+/icMvFCbFKrmi4y2g+Stf//oT3xqKg9WG51z36Hr2neFi56A/NXwwcyj248faFLwweaC/dTWGbLaelKoq4XlL8EjI2xVTOaJcPP/4MLH7KxZvU61YwgtfxFWzA12tAd9fLedCP6se4MdiWrtBk+2I+pmf3B07/P5/U610UO22shd1ngYczssfRZ+CK3ZAzQp+CA7rxSg7VYfGQMbPoZ/nwpvTrcTrl/7Nlw1DzIGHbrtab+GHmPhnTtsqSHYcr6DH+bZeQ469gh2NKq163EyJHY+ulZIh1QbneV9uzN+Z0+83r4tpPovaFLwwYa8MiIjhF6pCcEOpeXt/B6enwQvToaqMrhkDtz4qS0VeBIRCZOfdKkTrQhouIeoq4P3f21/xGN/Hrw4VNsREQmDLoINH0JFM6aLr6mEN2+x38mz/9T4tpHR9vcWGQ3zrg3ub8mFJgUfrM8rpVdqArFRbegC5t6t8OoN8MQ4yFtlL9DestgWnyOa+FokHwMXPm5f9+FvAxGtZytfhp3LYPzdENtGS3Eq8AZPto0q1r175K/94gEoWAsXPGwH22tK+272t7T7h+D+llxoUvDBhrbU8mh/oe3g9chI+6U/5U6YsRxGT7eT1vuq39m2ymbxU7D6Tf/F601lmb2W0HUEHHd54Pev2q5uI6F99yNvhbRjmW3wMKyJaiPYfofmAAAbT0lEQVR3/SfASbcG77fkRpNCEyqqa9lWVE5Weiu/yFxZCl/9zbYo+vZxGHYlzPgezjyKjl5nzIKuI2H+z2zJI5C+/geU7YYJ9zddslHqSIjYkVM3fWZPonxR39ooMQPOaaLayJPxdx/8LRVtPvLXtyD9NTVhY34ZxtB6m6MWbYEPfgN/H2gHius5Fm5eaIu3yV2O7r2jYmydKAKvXm8ntw+Evdvgm0dgyKWQeUJg9qnCy+DJYGph7Vu+bV9fbfSjh3yrNnIXGQ2XPmMT0rzrWrZX9RHSpNCE+pZH/Tu3ouojY2Dz5/DSFHj4ePju35B1Ntz4CUx5CdKPbbl9dewBkx6xLS4+uafl3rcxH80CibBnV0r5Q+chkJLlWyukhmqjq2y1anN16A4X/gt2rYAP/6/573OUdACfJmTnlREdKfRIaQUtj6rK7cXXb/9tz1rapcKpd8LIG46+VNCYgZNg1I2wcLZttdTvHP/ta+v/7BDH4+6yF+mU8gcR22nz8/vt/Bzefj8N1Ubph3dSa45jz4PRP4VFj9lS/cALjv49j5CWFJqwIa+U3qmJRIfybGr7cuzZ898HwDu32670kx6Dn6+2baH9mRDqnf0nyBgCb0yH4h3+2Uddre0BmtwNTp7hn30oVW/QxYCxJyHefPEXp9rIx9ZGvhh/DxwzHN66NfDX6tCk0KTs/FKyQrHlkTGw7Rt4+cfw0HG2jr33aTD1ffjJV3D8VbYvQaBEx9k60ZpKeO1G/0xWsvxF2L0SzroHYtq1/Psr5Sqtn61G8tYKaccy2+DhaKuN3EXF2N8SwLypgbtW59Ck0Ijyqhpyig6E1kXm6gr4/kXb+/iZibDlS3vWfNtKuOx52yNTJDixpWbB+X+H7d/YC28tqXiHvVCeeaK9CKhUIAyeDLmLDz9jr6mEt25puWojdx17wqTZth/Ox3e3/Ps3QpNCIzbklQEh0vKoshQ+/SP8YxC89VOorbYtHe5Ya8+cO2QGO0Jr6BX2zOnLB2FzC8xitfN7eO0mWxqqKLZNUIOV9FT4GXSxvV/9xqHLv3wQ8tc0v7WRLwZeACdMg0WPwrr3/LMPDzQpNCJkxjyqqbItib78q22Cec18+OlCGHFdaFajnPugLTW8fhOU5R/56+tqYc18mDPR9rhe/x6Muglu+Ra6Dm/xcJXyqmMP6Dbq0Cqknd/DV3+HoVf6t1EFwNl/hC5D4c2b7bwmAaBJoREb8suIiYoIbssjY2yHlq1fwUWP2yalvU8L7bPlmAS45Bl7Zv/GT+wYRb6oKLFDdT88DF75MZTk2qL5HWtg4v3Qqbd/41bKk8GT7TAUBdn2BK2+tdEEP1QbuYuKtb+lulrbF6i22u+71KTQiOy8UvqkJRIZEcQD8Gf3wcq5cPpvbdVMa9F5MEz4M2z61I4Y2ZiiLXbojb8PhAW/geSucNkL8LPv4aRbPA89rFSgDLwQEFj9Onz5F5dqo46B2X9KH9vZNHexPWnyM+2n0Ijs3aWc0KtT8AJY9oL9Eh5/deuciH7EVHsh/NM/2gvg3UcfXFffemrRY7Z6SCJs/e3om7WKSIWW5C62z8CSObB/T2CqjdwNvtiWEgac7/ddaVLworSimp3FFcGbWGfjx3ac9T5nwPn/DO3qIm9E7BnVzu/tiKzTv4KYRHvGtegx23MzvqMd9nrUTYHpT6FUcwy+2M6rnNQlMNVGngwNzMCPmhS82JAfxJZHu3+AV66F9AFw6XN2XJTWKq69HR/p6XPghYugdLcdyC61v012x10emhfLlXI18EI7S9qZvw9ctVGQeE0KInKpMWaeiPQyxmwJZFChYEOwWh4V74AXL7MH06vmNX8E01DSdYRtRfHBr6HPmXDho/a+NZZ+VHhq1wl+8mWwowiIxkoKdwHzgNeAsKvkzc4rIy46gsyOATyLrSiGFy+1M6Bd/4GdzKatGD0dhk3Ri8ZKhbjGkkKRiHwG9BKR+e4rjTGBH6kpgLLzSslKTyIiUC2PaqvhlWtgz3q46tXD50ZuCzQhKBXyGksK52JLCC8AfwtMOKEjO6+UMX1TA7MzY+xF5c2f24Hs+pwemP0qpZSbxpLC08aYH4vIk8aYZo1XICITgIeASOApY8z9buu7A88BHZxtZhpjAtef24viA9XklVQG7iLzF3+xg72dNtMOZKeUUkHSWOe1ESLSA7hKRDqKSCfXW1NvLCKRwKPARGAgMEVEBrpt9jvgFWPM8cAVwGPN+zNaVkAvMi//L3x+n237PG6m//enlFKNaKyk8DjwAdAbWAq4Vq4bZ3ljTgA2GmM2A4jIXGASsMbtfeqb17QHdvocuR+tb0gKfi4pbPrMDmHRe5xtz6+tcZRSQea1pGCMedgYMwCYY4zpbYzp5XLzZRCarkCOy/NcZ5mru4GrRSQXeA/4mac3EpFpIrJERJYUFBT4sOujsyGvjISYSLp2iPffTvJW2wvLqf3tkNdRMf7bl1JK+ajJsY+MMTeLyFgRmQogIqki0suH9/Z02mvcnk8BnjXGdMNe2H5BRA6LyRjzhDFmpDFmZFpamg+7PjrZeaX0zUhC/HXmXrLTNj2NSYCrXtFWOUqpkNFkj2YR+T0wEugPPAPEAP8BxjTx0lzAdZD/bhxePXQDMAHAGLNQROKAVKAZ4y23nOy8Mk7v75Z8Nn1mu7l36m2bi2YMtvep/Y7sLL+y1HZOqyi2s6TpPMNKqRDiyzAXFwHHA8sAjDE7RcSXyvbFQJZTqtiBvZB8pds224EzgWdFZAAQB/i/fqgRRfur2FNWSf/Obn/ipk+gOAdik+Dbx6HWmSIvIspWAWUMOjRZJHU+/BpBbbUdviJ/jS0hdDkuMH+UUkr5yJekUGWMMSJiAETEp8kFjDE1InIrsADb3HSOMWa1iNwLLDHGzAd+ATwpIj/HVi1dZ4xxr2IKqPqJdQ4bCK9oC6T0tYO61VZD4SbIW2WvDeSttiN+/vDKwe3jOx2aJDIG2VEWN30CFzwCfccH8K9SSinf+JIUXhGRfwMdROQm4HrgSV/e3Olz8J7bslkuj9fQdDVUQHltjlq0+eAkL5HRkH6svQ255OA2B/ZC3honUTgJY9lzUF1+cJtTfwnDr/HzX6GUUs3TZFIwxvxVRM4CSrDXFWYZYz7ye2RBkp1XRlJsFJ2T4w4urKuzJYU+ZzT+4viO0HOMvbm+du8WmyBMrTNhh1JKhSZfh85eCcQ6j1f4KZaQkJ1XSlZG4qEtj0p3Qc2B5k0HGRFhZ05K6dNyQSqllJ802SRVRC4DvgMuBS4DvhWRSxp/VetkjCE7r/Twi8xFm+29zhGslGrjfCkp/BYYZYzJBxCRNOBj4FV/BhYMe8qq2FteTVa6JgWlVHhqsqQARNQnBEehj69rdTZ4G96iaBNExmifAqVUm+dLSeEDEVkAvOQ8vxx4338hBU92Yy2POvaEiMjAB6WUUgHkS+ujX4rIxcBY7NAVTxhj3vB7ZEGQnV9Gh3bRpCXFHrqiaItWHSmlwoIvw1z0At4zxrzuPI8XkZ7GmK3+Di7QsneX0i/dbcwjY2xJoddpwQtMKaUCxJdrA/OAOpfntc6yNqW+5VGWe9VR6W7b+ayTL2MAKqVU6+ZLUogyxlTVP3Eet7lxnvNLKympqPFwkVlbHimlwocvSaFARC6ofyIik4A9/gspOLK9tjzSpKCUCh++tD6aDrwoIrOd57nAj/0XUnCs391Iy6OIaGif6eFVSinVtvjS+mgTMFpEEgExxpT6P6zA25BXRkpCDCmJ7i2PNkHHHhDp64ggSinVevl8pDPGlPkzkGDLzvdwkRkOHR1VKaXauDbZM/lIGWPYmFd2+PUEY7SPglIqrGhSAHYVV1Ba6aHl0f4CqCqDTjrCqVIqPPgySmo7Efk/EXnSeZ4lIuf7P7TAWe+t5VHhJnuvJQWlVJjwpaTwDFAJnOQ8zwX+6LeIgqDR2dZAO64ppcKGL0mhjzHmL0A1gDHmAHYMpDYjO6+MtKRYOrRz65NXtBkkEjp0D05gSikVYL4khSoRiQcMgIj0wZYc2owNeaX0d686ApfmqNGBD0oppYLAl6Twe+ADIFNEXgQ+AX7l16gCqK7OkJ1Xps1RlVIK3zqvfSQiy4DR2Gqj24wxbWaYix37DnCgutZ7c9TME4MTmFJKBYEvrY8uAmqMMe8aY94BakTkQv+HFhheJ9YpL4TKEi0pKKXCik/VR8aY4vonxph92CqlNiE7z3bUzvLaHFX7KCilwodPczR7WNZmBgLakFdKl/ZxJMe5XUzW0VGVUmHIl6SwRET+LiJ9RKS3iPwDWOrvwAJlfV7p4aUEcJqjRmhzVKVUWPElKfwMqAJexs64VgHc4s+gAqW2zrAxv4x+6V5aHnXoDlFtbj4hpZTyypfWR/uBmQGIJeByisqprKk7vOUR2D4KWnWklAozXpOCiPzTGHO7iLyN03HNlTHmAg8va1UaWh519tActXAzHHdpEKJSSqngaayk8IJz/9dABBIM9Ukhy7366MBeqCzWkoJSKux4TQrGmKXO/RcikuY8LghUYIGQnVdG1w7xJMS6fQwNLY+0OapSKrx4vdAs1t0isgdYB2SLSIGIzApceP6VnVd6eKc10CGzlVJhq7HWR7cDY4BRxpgUY0xH4ERgjIj8PCDR+VFNbR2bC/Yffj0BnJKC2MHwlFIqjDSWFK4BphhjttQvMMZsBq521rVqWwvLqaqto1+6l6TQPhOiYgMfmFJKBVFjSSHa08B3znWFVj+W9AZvs62BTQopWnWklAo/jSWFqmauaxWy88oQgb4eO65pHwWlVHhqrEnqUBEp8bBcgDg/xRMw2fmlZHZsR3xM5KEryotsk1RNCkqpMNRYk9RIb+t8JSITgIeASOApY8z9buv/AZzuPG0HpBtjOhztfn2xIa/Uc9XRXucSiiYFpVQY8ttopyISCTwKnAXkAotFZL4xZk39NsaYn7ts/zPgeH/F46qqxrY8Gj8g4/CVhdpHQSkVvnwZEK+5TgA2GmM2G2OqgLnApEa2nwK85Md4Gmwt3E9NnfF+kRmBjj0DEYpSSoUUfyaFrkCOy/NcZ9lhRKQH0Av41I/xNGgY3sLbvMzJXSG61V82UUqpI+bPpCAelh02sJ7jCuBVY0ytxzcSmSYiS0RkSUHB0Y+0kZ1XRoRAnzQvSaFTr6Peh1JKtUb+TAq5QKbL827ATi/bXkEjVUfGmCeMMSONMSPT0tKOOrDs3aX0TEkgLtrDtfSiTZCi1xOUUuHJn0lhMZAlIr1EJAZ74J/vvpGI9Ac6Agv9GMshsvNLPVcdHdgH5YXa8kgpFbb8lhSMMTXArcACYC3wijFmtYjcKyKuczFMAeYaY7xVLbWoyppathWWa3NUpZTywG9NUgGMMe8B77ktm+X2/G5/xuBuc8F+ahtteYQ2R1VKhS1/Vh+FpOzGxjyq76OgzVGVUmEqLJNCVITQKzXh8JVFmyHpGIhpF/jAlFIqBIRhUiijZ2oCMVEe/vSizXo9QSkV1sIuKWzwNtsa6JDZSqmwF1ZJoaK6lm1FXloeVZTA/nwtKSilwlpYJYWN+WUY4+UiszZHVUqp8EoKB1seeRneAjQpKKXCWpglhTKiI4UeKR5aHhVusveaFJRSYSysksKGvFL6pCUSHemp5dEWSOwMMR4ShlJKhYmwSgp2zCMP1xNAm6MqpRRhlBT2V9aQU3SAfumNNEfVpKCUCnNhkxQ25pcBeC4pVJZB2W7to6CUCnthkxQabXmkzVGVUgoIo6QAkJWe6LnlkTZHVUopwM9DZ4eSS0dmcunITM8rNSkopRQQZiUFrwo3QUI6xHppmaSUUmFCkwLYPgpaSlBKKU0KgDZHVUophyaFqnIo3anNUZVSCk0K2hxVKaVcaFLQlkdKKdVAk4ImBaWUaqBJoXATtEuFuPbBjkQppYJOk4K2PFJKqQaaFLSPglJKNQjvpFB9AEpyNSkopZQjvJPC3q32PqVPUMNQSqlQEd5JoaHlUa/gxqGUUiFCkwJo9ZFSSjk0KcR3tDellFJhnhQKN0EnvZ6glFL1wjspaHNUpZQ6RPgmhZpKKM7RpKCUUi7CNyns3QYYbY6qlFIuwjcpFG2y91pSUEqpBmGcFLQ5qlJKuQvvpBDXXpujKqWUi/BOCp36gEiwI1FKqZDh16QgIhNEZL2IbBSRmV62uUxE1ojIahH5rz/jOUThJq06UkopN1H+emMRiQQeBc4CcoHFIjLfGLPGZZss4C5gjDFmr4ik+yueQ9RU2eaox10ekN0ppVRr4c+SwgnARmPMZmNMFTAXmOS2zU3Ao8aYvQDGmHw/xnPQvu1g6rSkoJRSbvyZFLoCOS7Pc51lrvoB/UTkfyKySEQmeHojEZkmIktEZElBQcHRR1bfHFX7KCil1CH8mRQ8XcE1bs+jgCxgHDAFeEpEOhz2ImOeMMaMNMaMTEtLO/rItDmqUkp55M+kkAtkujzvBuz0sM1bxphqY8wWYD02SfhX0WaITYZ2KX7flVJKtSb+TAqLgSwR6SUiMcAVwHy3bd4ETgcQkVRsddJmP8ZkFW22E+toc1SllDqE35KCMaYGuBVYAKwFXjHGrBaRe0XkAmezBUChiKwBPgN+aYwp9FdMDXTIbKWU8shvTVIBjDHvAe+5LZvl8tgAdzi3wKittq2PBk8O2C6VUqq1CL8ezfu2g6nVi8xKKeVB+CWFoi32XpujKqXUYcIwKeiQ2Uop5U0YJoXNEJMICS3Q30EppdqY8EwK2hxVKaU8CtOkoNcTlFLKk/BKCrU1sHerXk9QSikvwispFOdAXY0mBaWU8iK8koIOhKeUUo0Kz6SgfRSUUsqj8EsK0e0gMSPYkSilVEgKv6TQqbc2R1VKKS/CMCn0CnYUSikVssInKdTVOs1R9XqCUkp5Ez5JoTgXaqu05ZFSSjUifJKCNkdVSqkmaVJQSinVIHySQlJn6H8eJHUJdiRKKRWy/DodZ0g59jx7U0op5VX4lBSUUko1SZOCUkqpBpoUlFJKNdCkoJRSqoEmBaWUUg00KSillGqgSUEppVQDTQpKKaUaiDEm2DEcEREpALY18+WpwJ4WDKelaXxHR+M7eqEeo8bXfD2MMWlNbdTqksLREJElxpiRwY7DG43v6Gh8Ry/UY9T4/E+rj5RSSjXQpKCUUqpBuCWFJ4IdQBM0vqOj8R29UI9R4/OzsLqmoJRSqnHhVlJQSinVCE0KSimlGrTJpCAiE0RkvYhsFJGZHtbHisjLzvpvRaRnAGPLFJHPRGStiKwWkds8bDNORIpFZLlzmxWo+Jz9bxWRH5x9L/GwXkTkYefzWykiwwMYW3+Xz2W5iJSIyO1u2wT88xOROSKSLyKrXJZ1EpGPRGSDc9/Ry2uvdbbZICLXBii2B0VknfP/e0NEOnh5baPfBT/HeLeI7HD5P57r5bWN/t79GN/LLrFtFZHlXl4bkM+wxRhj2tQNiAQ2Ab2BGGAFMNBtm58CjzuPrwBeDmB8XYDhzuMkINtDfOOAd4L4GW4FUhtZfy7wPiDAaODbIP6vd2M75QT18wNOBYYDq1yW/QWY6TyeCTzg4XWdgM3OfUfncccAxHY2EOU8fsBTbL58F/wc493AnT58Bxr9vfsrPrf1fwNmBfMzbKlbWywpnABsNMZsNsZUAXOBSW7bTAKecx6/CpwpIhKI4Iwxu4wxy5zHpcBaoGsg9t2CJgHPG2sR0EFEgjH59ZnAJmNMc3u4txhjzJdAkdti1+/Zc8CFHl56DvCRMabIGLMX+AiY4O/YjDEfGmNqnKeLgG4tuc8j5eXz84Uvv/ej1lh8zrHjMuCllt5vMLTFpNAVyHF5nsvhB92GbZwfRjGQEpDoXDjVVscD33pYfZKIrBCR90VkUEADAwN8KCJLRWSah/W+fMaBcAXef4jB/PzqZRhjdoE9GQDSPWwTCp/l9diSnydNfRf87VanimuOl+q3UPj8TgHyjDEbvKwP9md4RNpiUvB0xu/e7taXbfxKRBKB14DbjTElbquXYatEhgKPAG8GMjZgjDFmODARuEVETnVbHwqfXwxwATDPw+pgf35HIqifpYj8FqgBXvSySVPfBX/6F9AHGAbswlbRuAv6dxGYQuOlhGB+hkesLSaFXCDT5Xk3YKe3bUQkCmhP84quzSIi0diE8KIx5nX39caYEmNMmfP4PSBaRFIDFZ8xZqdznw+8gS2iu/LlM/a3icAyY0ye+4pgf34u8uqr1Zz7fA/bBO2zdC5qnw9cZZzKb3c+fBf8xhiTZ4ypNcbUAU962XdQv4vO8eNi4GVv2wTzM2yOtpgUFgNZItLLOZu8Apjvts18oL6VxyXAp95+FC3NqX98GlhrjPm7l20611/jEJETsP+nwgDFlyAiSfWPsRckV7ltNh+4xmmFNBoorq8mCSCvZ2fB/PzcuH7PrgXe8rDNAuBsEenoVI+c7SzzKxGZAPwauMAYU+5lG1++C/6M0fU61UVe9u3L792fxgPrjDG5nlYG+zNslmBf6fbHDds6JhvbKuG3zrJ7sT8AgDhstcNG4DugdwBjG4st3q4Elju3c4HpwHRnm1uB1diWFIuAkwMYX29nvyucGOo/P9f4BHjU+Xx/AEYG+P/bDnuQb++yLKifHzZB7QKqsWevN2CvU30CbHDuOznbjgSecnnt9c53cSMwNUCxbcTWxdd/B+tb4x0DvNfYdyGAn98LzvdrJfZA38U9Ruf5Yb/3QMTnLH+2/nvnsm1QPsOWuukwF0oppRq0xeojpZRSzaRJQSmlVANNCkoppRpoUlBKKdVAk4JSSqkGmhSUciMitW4jsbbYyJsi0tN1pE2lQk1UsANQKgQdMMYMC3YQSgWDlhSU8pEzLv4DIvKdc+vrLO8hIp84A7d9IiLdneUZzlwFK5zbyc5bRYrIk2Ln0/hQROKD9kcp5UaTglKHi3erPrrcZV2JMeYEYDbwT2fZbOxQ4sdhB5Z72Fn+MPCFsQPzDcf2aAXIAh41xgwC9gGT/fz3KOUz7dGslBsRKTPGJHpYvhU4wxiz2RnUcLcxJkVE9mCHYKh2lu8yxqSKSAHQzRhT6fIePbHzJ2Q5z38NRBtj/uj/v0yppmlJQakjY7w89raNJ5Uuj2vRa3sqhGhSUOrIXO5yv9B5/A12dE6Aq4CvncefADcDiEikiCQHKkilmkvPUJQ6XLzbJOwfGGPqm6XGisi32BOqKc6yGcAcEfklUABMdZbfBjwhIjdgSwQ3Y0faVCpk6TUFpXzkXFMYaYzZE+xYlPIXrT5SSinVQEsKSimlGmhJQSmlVANNCkoppRpoUlBKKdVAk4JSSqkGmhSUUko1+H9L2FzeX77Q4gAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"if __name__ == '__main__':\n",
" train_and_predict()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|