Spaces:
Sleeping
Sleeping
Commit
·
f749037
1
Parent(s):
983c3fb
Add weights to git lfs
Browse files- .gitattributes +1 -0
- .gitignore +0 -1
- models/weights.h5 +3 -0
- notebooks/train.ipynb +1 -3
- src/utils/upload_dataset.py +36 -0
.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
models/weights.h5 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -3,6 +3,5 @@ __pycache__/
|
|
3 |
.DS_Store
|
4 |
**/*.png
|
5 |
**/*.npy
|
6 |
-
**/*.h5
|
7 |
**/*.nii.gz
|
8 |
/data/raw
|
|
|
3 |
.DS_Store
|
4 |
**/*.png
|
5 |
**/*.npy
|
|
|
6 |
**/*.nii.gz
|
7 |
/data/raw
|
models/weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:069f52eac88d5a6fe114b27ce6cbd9868c7432d54ef63bc6a502355058bd2641
|
3 |
+
size 93275616
|
notebooks/train.ipynb
CHANGED
@@ -8,7 +8,6 @@
|
|
8 |
"source": [
|
9 |
"import os\n",
|
10 |
"from skimage.transform import resize\n",
|
11 |
-
"from skimage.io import imsave\n",
|
12 |
"import numpy as np\n",
|
13 |
"from skimage.segmentation import mark_boundaries\n",
|
14 |
"from keras.models import Model\n",
|
@@ -17,9 +16,8 @@
|
|
17 |
"from keras.callbacks import ModelCheckpoint\n",
|
18 |
"from keras import backend as K\n",
|
19 |
"from skimage.exposure import rescale_intensity\n",
|
20 |
-
"from keras.callbacks import History\n",
|
21 |
"from skimage import io\n",
|
22 |
-
"from data import load_train_data, load_test_data"
|
23 |
]
|
24 |
},
|
25 |
{
|
|
|
8 |
"source": [
|
9 |
"import os\n",
|
10 |
"from skimage.transform import resize\n",
|
|
|
11 |
"import numpy as np\n",
|
12 |
"from skimage.segmentation import mark_boundaries\n",
|
13 |
"from keras.models import Model\n",
|
|
|
16 |
"from keras.callbacks import ModelCheckpoint\n",
|
17 |
"from keras import backend as K\n",
|
18 |
"from skimage.exposure import rescale_intensity\n",
|
|
|
19 |
"from skimage import io\n",
|
20 |
+
"from ..src.data.data_loader import load_train_data, load_test_data"
|
21 |
]
|
22 |
},
|
23 |
{
|
src/utils/upload_dataset.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import Dataset, Features, Value
|
2 |
+
import os
|
3 |
+
import nibabel as nib
|
4 |
+
|
5 |
+
# Define the paths to your raw data files
|
6 |
+
raw_data_path = './data/raw'
|
7 |
+
|
8 |
+
# Function to load NIfTI files
|
9 |
+
def load_nifti(file_path):
|
10 |
+
nifti = nib.load(file_path)
|
11 |
+
return nifti.get_fdata()
|
12 |
+
|
13 |
+
# Create a list to hold the data
|
14 |
+
data = []
|
15 |
+
|
16 |
+
# Iterate over the files in the raw data directory
|
17 |
+
for file_name in os.listdir(raw_data_path):
|
18 |
+
if file_name.endswith('.nii.gz'):
|
19 |
+
file_path = os.path.join(raw_data_path, file_name)
|
20 |
+
data.append({
|
21 |
+
'file_name': file_name,
|
22 |
+
'data': load_nifti(file_path).tolist() # Convert to list for serialization
|
23 |
+
})
|
24 |
+
|
25 |
+
# Define the features of the dataset
|
26 |
+
features = Features({
|
27 |
+
'file_name': Value('string'),
|
28 |
+
'data': Value('float32', id='data')
|
29 |
+
})
|
30 |
+
|
31 |
+
# Create Dataset object
|
32 |
+
dataset = Dataset.from_dict({'file_name': [d['file_name'] for d in data], 'data': [d['data'] for d in data]}, features=features)
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
# Push the dataset to Hugging Face
|
36 |
+
dataset.push_to_hub("ashutosh-pathak/liver-segmentation")
|