ashutosh-pathak commited on
Commit
f749037
·
1 Parent(s): 983c3fb

Add weights to git lfs

Browse files
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ models/weights.h5 filter=lfs diff=lfs merge=lfs -text
.gitignore CHANGED
@@ -3,6 +3,5 @@ __pycache__/
3
  .DS_Store
4
  **/*.png
5
  **/*.npy
6
- **/*.h5
7
  **/*.nii.gz
8
  /data/raw
 
3
  .DS_Store
4
  **/*.png
5
  **/*.npy
 
6
  **/*.nii.gz
7
  /data/raw
models/weights.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:069f52eac88d5a6fe114b27ce6cbd9868c7432d54ef63bc6a502355058bd2641
3
+ size 93275616
notebooks/train.ipynb CHANGED
@@ -8,7 +8,6 @@
8
  "source": [
9
  "import os\n",
10
  "from skimage.transform import resize\n",
11
- "from skimage.io import imsave\n",
12
  "import numpy as np\n",
13
  "from skimage.segmentation import mark_boundaries\n",
14
  "from keras.models import Model\n",
@@ -17,9 +16,8 @@
17
  "from keras.callbacks import ModelCheckpoint\n",
18
  "from keras import backend as K\n",
19
  "from skimage.exposure import rescale_intensity\n",
20
- "from keras.callbacks import History\n",
21
  "from skimage import io\n",
22
- "from data import load_train_data, load_test_data"
23
  ]
24
  },
25
  {
 
8
  "source": [
9
  "import os\n",
10
  "from skimage.transform import resize\n",
 
11
  "import numpy as np\n",
12
  "from skimage.segmentation import mark_boundaries\n",
13
  "from keras.models import Model\n",
 
16
  "from keras.callbacks import ModelCheckpoint\n",
17
  "from keras import backend as K\n",
18
  "from skimage.exposure import rescale_intensity\n",
 
19
  "from skimage import io\n",
20
+ "from ..src.data.data_loader import load_train_data, load_test_data"
21
  ]
22
  },
23
  {
src/utils/upload_dataset.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import Dataset, Features, Value
2
+ import os
3
+ import nibabel as nib
4
+
5
+ # Define the paths to your raw data files
6
+ raw_data_path = './data/raw'
7
+
8
+ # Function to load NIfTI files
9
+ def load_nifti(file_path):
10
+ nifti = nib.load(file_path)
11
+ return nifti.get_fdata()
12
+
13
+ # Create a list to hold the data
14
+ data = []
15
+
16
+ # Iterate over the files in the raw data directory
17
+ for file_name in os.listdir(raw_data_path):
18
+ if file_name.endswith('.nii.gz'):
19
+ file_path = os.path.join(raw_data_path, file_name)
20
+ data.append({
21
+ 'file_name': file_name,
22
+ 'data': load_nifti(file_path).tolist() # Convert to list for serialization
23
+ })
24
+
25
+ # Define the features of the dataset
26
+ features = Features({
27
+ 'file_name': Value('string'),
28
+ 'data': Value('float32', id='data')
29
+ })
30
+
31
+ # Create Dataset object
32
+ dataset = Dataset.from_dict({'file_name': [d['file_name'] for d in data], 'data': [d['data'] for d in data]}, features=features)
33
+
34
+ if __name__ == "__main__":
35
+ # Push the dataset to Hugging Face
36
+ dataset.push_to_hub("ashutosh-pathak/liver-segmentation")