ashok2216's picture
Update app.py
c2cebc9 verified
import pybase64 as base64
import pandas as pd
import streamlit as st
import seaborn as sns
from data_cleaning import preprocess
from transformers import pipeline
from data_integration import scrape_all_pages
page_bg_img = """
<style>
.stApp > header { background-color: transparent;}
.stApp {
background: rgb(80,255,235);
background: linear-gradient(90deg, rgba(80,255,235,1) 0%,
rgba(0,0,255,1) 50%, rgba(188,0,255,1) 92%);
background-size: 150% 150%;
animation: my_animation 30s ease infinite;
}
@keyframes my_animation {
0% {background-position: 0% 0%;}
25% { background-position: 0% 0%;}
50% {background-position: 100% 100%;}
75% {background-position: 100% 100%;}
100% {background-position: 0% 0%;}
}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
#st.image("logo.png", width=200, height=200)
st.image("logo.png", width=80)
st.subheader(':violet[NLP HUB®]')
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model')
@st.cache_resource(experimental_allow_widgets=True)
def load_model():
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
return sentiment_model
model = load_model()
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
url = st.text_input("Amazon product link", sample_url)
st.button("Re-run")
st.write("Done")
st.subheader('', divider='rainbow')
try:
all_reviews = scrape_all_pages(url)
# Convert to DataFrame for further analysis
reviews = pd.DataFrame(all_reviews)
reviews['processed_text'] = reviews['content'].apply(preprocess)
# st.dataframe(reviews, use_container_width=True)
# st.markdown(sentiment_model(['It is Super!']))
sentiments = []
for text in reviews['processed_text']:
if list(model(text)[0].values())[0] == 'LABEL_1':
output = 'Positive'
else:
output = 'Negative'
sentiments.append(output)
reviews['sentiments'] = sentiments
st.markdown(':white[Output]')
st.dataframe(reviews, use_container_width=True)
# sns.countplot(reviews['sentiments'])
except KeyError:
st.markdown('Please :red[Re-run] the app')