# '''Copyright 2024 Ashok Kumar | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License.''' | |
# import os | |
# import requests | |
# import json | |
# import pandas as pd | |
# import numpy as np | |
# import requests | |
# import geopandas as gpd | |
# import contextily as ctx | |
# import tzlocal | |
# import pytz | |
# from PIL import Image | |
# from datetime import datetime | |
# import matplotlib.pyplot as plt | |
# from geopy.exc import GeocoderTimedOut | |
# from geopy.geocoders import Nominatim | |
# import warnings | |
# warnings.filterwarnings('ignore') | |
# from plotly.graph_objs import Marker | |
# import plotly.express as px | |
# import streamlit as st | |
# from data import flight_data | |
# from huggingface_hub import InferenceApi, login, InferenceClient | |
# hf_token = os.getenv("HF_TOKEN") | |
# if hf_token is None: | |
# raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.") | |
# login(hf_token) | |
# API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq" | |
# headers = {"Authorization": f"Bearer {hf_token}"} | |
# def query(payload): | |
# response = requests.post(API_URL, headers=headers, json=payload) | |
# return response.json() | |
# def query_flight_data(geo_df, question): | |
# table_data = { | |
# "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(), | |
# "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), | |
# "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), | |
# "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(), # Assuming on_ground is boolean or categorical | |
# "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None | |
# "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None | |
# "spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical | |
# "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical | |
# "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(), | |
# "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None | |
# } | |
# # Construct the payload | |
# payload = { | |
# "inputs": { | |
# "query": question, | |
# "table": table_data, | |
# } | |
# } | |
# # Get the model response | |
# response = query(payload) | |
# # Check if 'answer' is in response and return it as a sentence | |
# if 'answer' in response: | |
# answer = response['answer'] | |
# return f"The answer to your question '{question}': :orange[{answer}]" | |
# else: | |
# return "The model could not find an answer to your question." | |
# def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color): | |
# geolocator = Nominatim(user_agent="flight_tracker") | |
# loc = geolocator.geocode(country) | |
# loc_box = loc[1] | |
# extend_left =+12*flight_view_level | |
# extend_right =+10*flight_view_level | |
# extend_top =+10*flight_view_level | |
# extend_bottom =+ 18*flight_view_level | |
# lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right | |
# lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top | |
# tile_zoom = 8 # zoom of the map loaded by contextily | |
# figsize = (15, 15) | |
# columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude", | |
# "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude", | |
# "squawk","spi","position_source",] | |
# data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat" | |
# column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude", | |
# "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"] | |
# airport_df = pd.read_csv(data_url, header=None, names=column_names) | |
# airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]] | |
# airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)] | |
# airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) & | |
# (airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) & | |
# (airport_country_loc['Longitude'] <= lon_max)] | |
# def get_traffic_gdf(): | |
# url_data = ( | |
# f"https://@opensky-network.org/api/states/all?" | |
# f"lamin={str(lat_min)}" | |
# f"&lomin={str(lon_min)}" | |
# f"&lamax={str(lat_max)}" | |
# f"&lomax={str(lon_max)}") | |
# json_dict = requests.get(url_data).json() | |
# unix_timestamp = int(json_dict["time"]) | |
# local_timezone = pytz.timezone(local_time_zone) # get pytz timezone | |
# local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S') | |
# time = [] | |
# for i in range(len(json_dict['states'])): | |
# time.append(local_time) | |
# df_time = pd.DataFrame(time,columns=['time']) | |
# state_df = pd.DataFrame(json_dict["states"],columns=columns) | |
# state_df['time'] = df_time | |
# gdf = gpd.GeoDataFrame( | |
# state_df, | |
# geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude), | |
# crs={"init": "epsg:4326"}, # WGS84 | |
# ) | |
# # banner_image = Image.open('banner.png') | |
# # st.image(banner_image, width=300) | |
# st.title("Live Flight Tracker") | |
# st.subheader('Flight Details', divider='rainbow') | |
# st.write('Location: {0}'.format(loc)) | |
# st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone)) | |
# st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max)) | |
# st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max)) | |
# st.write('Number of Visible Flights: {}'.format(len(json_dict['states']))) | |
# st.write('Plotting the flight: {}'.format(flight_info)) | |
# st.subheader('Map Visualization', divider='rainbow') | |
# st.write('****Click ":orange[Update Map]" Button to Refresh the Map****') | |
# return gdf | |
# geo_df = get_traffic_gdf() | |
# if airport == 0: | |
# fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info, | |
# color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1, | |
# hover_name ='origin_country',hover_data=['callsign', 'baro_altitude', | |
# 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark') | |
# elif airport == 1: | |
# fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info, | |
# color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1, | |
# hover_name ='origin_country',hover_data=['callsign', 'baro_altitude', | |
# 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark') | |
# fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude", | |
# hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0]) | |
# else: None | |
# fig.update_layout(mapbox_style="carto-darkmatter") | |
# fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0}) | |
# # out = fig.show()) | |
# out = st.plotly_chart(fig, theme=None) | |
# return out | |
# st.set_page_config( | |
# layout="wide" | |
# ) | |
# image = Image.open('logo.png') | |
# add_selectbox = st.sidebar.image( | |
# image, width=150 | |
# ) | |
# add_selectbox = st.sidebar.subheader( | |
# "Configure Map",divider='rainbow' | |
# ) | |
# with st.sidebar: | |
# Refresh = st.button('Update Map', key=1) | |
# on = st.toggle('View Airports') | |
# if on: | |
# air_port = 1 | |
# st.write(':rainbow[Nice Work Buddy!]') | |
# st.write('Now Airports are Visible') | |
# else: | |
# air_port=0 | |
# view = st.slider('Increase Flight Visibility',1,6,2) | |
# st.write("You Selected:", view) | |
# cou = st.text_input('Type Country Name', 'north america') | |
# st.write('The current Country name is', cou) | |
# time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata') | |
# st.write('The current Time Zone is', time) | |
# info = st.selectbox( | |
# 'Select Flight Information', | |
# ('baro_altitude', | |
# 'on_ground', 'velocity', | |
# 'geo_altitude')) | |
# st.write('Plotting the data of Flight:', info) | |
# clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"]) | |
# if clr == "rainbow": | |
# st.write('The current color is', "****:rainbow[Rainbow]****") | |
# elif clr == 'ice': | |
# st.write('The current color is', "****:blue[Ice]****") | |
# elif clr == 'hot': | |
# st.write('The current color is', "****:red[Hot]****") | |
# else: None | |
# # with st.spinner('Wait!, We Requesting API Data...'): | |
# # try: | |
# flight_tracking(flight_view_level=view, country=cou,flight_info=info, | |
# local_time_zone=time, airport=air_port, color=clr) | |
# st.subheader('Ask your Questions!', divider='rainbow') | |
# st.write("Google's TAPAS base LLM model 🤖") | |
# geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1) | |
# question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?") | |
# result = query_flight_data(geo_df, question) | |
# st.markdown(result) | |
# # except TypeError: | |
# # st.error(':red[Error: ] Please Re-run this page.', icon="🚨") | |
# # st.button('Re-run', type="primary") | |
# # st.snow() | |
import streamlit as st | |
from huggingface_hub import InferenceClient | |
import os | |
hf_token = os.getenv("HF_TOKEN") | |
# Set up the Hugging Face Inference Client | |
client = InferenceClient( | |
provider="together", # Replace with the correct provider if needed | |
api_key= hf_token # Replace with your Hugging Face API key | |
) | |
# Streamlit app title | |
st.title("🤖 Deepseek R1 Chatbot") | |
st.write("Chat with the Deepseek R1 model powered by Hugging Face Inference API.") | |
# Initialize session state to store chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat history | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# User input | |
if prompt := st.chat_input("What would you like to ask?"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Generate response from Deepseek R1 model | |
with st.spinner("Thinking..."): | |
try: | |
# Prepare the messages for the model | |
messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages] | |
# Call the Hugging Face Inference API | |
completion = client.chat.completions.create( | |
model="deepseek-ai/DeepSeek-R1", # Replace with the correct model name | |
messages=messages, | |
max_tokens=500 | |
) | |
# Extract the model's response | |
response = completion.choices[0].message.content | |
# Add model's response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") |