File size: 13,650 Bytes
3d1f22b d1ab5ef 4e6b935 131fec3 d1ab5ef 4e6b935 3639373 4e6b935 3639373 4e6b935 3639373 4e6b935 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# '''Copyright 2024 Ashok Kumar
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.'''
# import os
# import requests
# import json
# import pandas as pd
# import numpy as np
# import requests
# import geopandas as gpd
# import contextily as ctx
# import tzlocal
# import pytz
# from PIL import Image
# from datetime import datetime
# import matplotlib.pyplot as plt
# from geopy.exc import GeocoderTimedOut
# from geopy.geocoders import Nominatim
# import warnings
# warnings.filterwarnings('ignore')
# from plotly.graph_objs import Marker
# import plotly.express as px
# import streamlit as st
# from data import flight_data
# from huggingface_hub import InferenceApi, login, InferenceClient
# hf_token = os.getenv("HF_TOKEN")
# if hf_token is None:
# raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
# login(hf_token)
# API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq"
# headers = {"Authorization": f"Bearer {hf_token}"}
# def query(payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# return response.json()
# def query_flight_data(geo_df, question):
# table_data = {
# "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
# "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
# "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
# "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(), # Assuming on_ground is boolean or categorical
# "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
# "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
# "spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical
# "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical
# "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
# "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
# }
# # Construct the payload
# payload = {
# "inputs": {
# "query": question,
# "table": table_data,
# }
# }
# # Get the model response
# response = query(payload)
# # Check if 'answer' is in response and return it as a sentence
# if 'answer' in response:
# answer = response['answer']
# return f"The answer to your question '{question}': :orange[{answer}]"
# else:
# return "The model could not find an answer to your question."
# def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
# geolocator = Nominatim(user_agent="flight_tracker")
# loc = geolocator.geocode(country)
# loc_box = loc[1]
# extend_left =+12*flight_view_level
# extend_right =+10*flight_view_level
# extend_top =+10*flight_view_level
# extend_bottom =+ 18*flight_view_level
# lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
# lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
# tile_zoom = 8 # zoom of the map loaded by contextily
# figsize = (15, 15)
# columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
# "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
# "squawk","spi","position_source",]
# data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
# column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
# "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
# airport_df = pd.read_csv(data_url, header=None, names=column_names)
# airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
# airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
# airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) &
# (airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) &
# (airport_country_loc['Longitude'] <= lon_max)]
# def get_traffic_gdf():
# url_data = (
# f"https://@opensky-network.org/api/states/all?"
# f"lamin={str(lat_min)}"
# f"&lomin={str(lon_min)}"
# f"&lamax={str(lat_max)}"
# f"&lomax={str(lon_max)}")
# json_dict = requests.get(url_data).json()
# unix_timestamp = int(json_dict["time"])
# local_timezone = pytz.timezone(local_time_zone) # get pytz timezone
# local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
# time = []
# for i in range(len(json_dict['states'])):
# time.append(local_time)
# df_time = pd.DataFrame(time,columns=['time'])
# state_df = pd.DataFrame(json_dict["states"],columns=columns)
# state_df['time'] = df_time
# gdf = gpd.GeoDataFrame(
# state_df,
# geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
# crs={"init": "epsg:4326"}, # WGS84
# )
# # banner_image = Image.open('banner.png')
# # st.image(banner_image, width=300)
# st.title("Live Flight Tracker")
# st.subheader('Flight Details', divider='rainbow')
# st.write('Location: {0}'.format(loc))
# st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
# st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
# st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
# st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
# st.write('Plotting the flight: {}'.format(flight_info))
# st.subheader('Map Visualization', divider='rainbow')
# st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
# return gdf
# geo_df = get_traffic_gdf()
# if airport == 0:
# fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
# color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
# hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
# 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
# elif airport == 1:
# fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
# color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
# hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
# 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
# fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude",
# hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0])
# else: None
# fig.update_layout(mapbox_style="carto-darkmatter")
# fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
# # out = fig.show())
# out = st.plotly_chart(fig, theme=None)
# return out
# st.set_page_config(
# layout="wide"
# )
# image = Image.open('logo.png')
# add_selectbox = st.sidebar.image(
# image, width=150
# )
# add_selectbox = st.sidebar.subheader(
# "Configure Map",divider='rainbow'
# )
# with st.sidebar:
# Refresh = st.button('Update Map', key=1)
# on = st.toggle('View Airports')
# if on:
# air_port = 1
# st.write(':rainbow[Nice Work Buddy!]')
# st.write('Now Airports are Visible')
# else:
# air_port=0
# view = st.slider('Increase Flight Visibility',1,6,2)
# st.write("You Selected:", view)
# cou = st.text_input('Type Country Name', 'north america')
# st.write('The current Country name is', cou)
# time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
# st.write('The current Time Zone is', time)
# info = st.selectbox(
# 'Select Flight Information',
# ('baro_altitude',
# 'on_ground', 'velocity',
# 'geo_altitude'))
# st.write('Plotting the data of Flight:', info)
# clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
# if clr == "rainbow":
# st.write('The current color is', "****:rainbow[Rainbow]****")
# elif clr == 'ice':
# st.write('The current color is', "****:blue[Ice]****")
# elif clr == 'hot':
# st.write('The current color is', "****:red[Hot]****")
# else: None
# # with st.spinner('Wait!, We Requesting API Data...'):
# # try:
# flight_tracking(flight_view_level=view, country=cou,flight_info=info,
# local_time_zone=time, airport=air_port, color=clr)
# st.subheader('Ask your Questions!', divider='rainbow')
# st.write("Google's TAPAS base LLM model 🤖")
# geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
# question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
# result = query_flight_data(geo_df, question)
# st.markdown(result)
# # except TypeError:
# # st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
# # st.button('Re-run', type="primary")
# # st.snow()
import streamlit as st
from huggingface_hub import InferenceClient
import os
hf_token = os.getenv("HF_TOKEN")
# Set up the Hugging Face Inference Client
client = InferenceClient(
provider="together", # Replace with the correct provider if needed
api_key= hf_token # Replace with your Hugging Face API key
)
# Streamlit app title
st.title("🤖 Deepseek R1 Chatbot")
st.write("Chat with the Deepseek R1 model powered by Hugging Face Inference API.")
# Initialize session state to store chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
if prompt := st.chat_input("What would you like to ask?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate response from Deepseek R1 model
with st.spinner("Thinking..."):
try:
# Prepare the messages for the model
messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]
# Call the Hugging Face Inference API
completion = client.chat.completions.create(
model="deepseek-ai/DeepSeek-R1", # Replace with the correct model name
messages=messages,
max_tokens=500
)
# Extract the model's response
response = completion.choices[0].message.content
# Add model's response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
with st.chat_message("assistant"):
st.markdown(response)
except Exception as e:
st.error(f"An error occurred: {e}") |