File size: 13,650 Bytes
3d1f22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ab5ef
4e6b935
131fec3
d1ab5ef
4e6b935
 
 
 
 
 
3639373
 
4e6b935
 
3639373
4e6b935
 
 
3639373
 
4e6b935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# '''Copyright 2024 Ashok Kumar

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.'''

# import os
# import requests
# import json
# import pandas as pd
# import numpy as np
# import requests
# import geopandas as gpd
# import contextily as ctx
# import tzlocal
# import pytz 
# from PIL import Image
# from datetime import datetime
# import matplotlib.pyplot as plt
# from geopy.exc import GeocoderTimedOut
# from geopy.geocoders import Nominatim
# import warnings
# warnings.filterwarnings('ignore')
# from plotly.graph_objs import Marker
# import plotly.express as px
# import streamlit as st
# from data import flight_data
# from huggingface_hub import InferenceApi, login, InferenceClient


# hf_token = os.getenv("HF_TOKEN")
# if hf_token is None:
#     raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
# login(hf_token)


# API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq"
# headers = {"Authorization": f"Bearer {hf_token}"}

# def query(payload):
#     response = requests.post(API_URL, headers=headers, json=payload)
#     return response.json()

# def query_flight_data(geo_df, question):


#     table_data = {
#         "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
#         "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
#         "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
#         "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(),  # Assuming on_ground is boolean or categorical
#         "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
#         "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
#         "spi": geo_df["spi"].astype(str).iloc[:100].tolist(),  # Assuming spi is boolean or categorical
#         "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(),  # Assuming position_source is categorical
#         "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
#     }


#     # Construct the payload
#     payload = {
#         "inputs": {
#             "query": question,
#             "table": table_data,
#         }
#     }

#     # Get the model response
#     response = query(payload)

#     # Check if 'answer' is in response and return it as a sentence
#     if 'answer' in response:
#         answer = response['answer']
#         return f"The answer to your question '{question}': :orange[{answer}]"
#     else:
#         return "The model could not find an answer to your question."


# def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
#     geolocator = Nominatim(user_agent="flight_tracker")
#     loc = geolocator.geocode(country)
#     loc_box = loc[1]
#     extend_left =+12*flight_view_level
#     extend_right =+10*flight_view_level
#     extend_top =+10*flight_view_level
#     extend_bottom =+ 18*flight_view_level
#     lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
#     lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
    
#     tile_zoom = 8 # zoom of the map loaded by contextily
#     figsize = (15, 15)
#     columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
#             "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
#             "squawk","spi","position_source",]
#     data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
#     column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
#                     "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
#     airport_df = pd.read_csv(data_url, header=None, names=column_names)
#     airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
#     airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
#     airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) &
#                             (airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) &
#                             (airport_country_loc['Longitude'] <= lon_max)]
#     def get_traffic_gdf():
#         url_data = (
#                 f"https://@opensky-network.org/api/states/all?"
#                 f"lamin={str(lat_min)}"
#                 f"&lomin={str(lon_min)}"
#                 f"&lamax={str(lat_max)}"
#                 f"&lomax={str(lon_max)}")
#         json_dict = requests.get(url_data).json()

#         unix_timestamp = int(json_dict["time"])
#         local_timezone = pytz.timezone(local_time_zone) # get pytz timezone
#         local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
#         time = []
#         for i in range(len(json_dict['states'])):
#             time.append(local_time)
#         df_time = pd.DataFrame(time,columns=['time'])
#         state_df = pd.DataFrame(json_dict["states"],columns=columns)
#         state_df['time'] = df_time
#         gdf = gpd.GeoDataFrame(
#                 state_df,
#                 geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
#                 crs={"init": "epsg:4326"},  # WGS84
#             )
#         # banner_image = Image.open('banner.png')
#         # st.image(banner_image, width=300)
#         st.title("Live Flight Tracker")
#         st.subheader('Flight Details', divider='rainbow')
#         st.write('Location: {0}'.format(loc))
#         st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
#         st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
#         st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
#         st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
#         st.write('Plotting the flight: {}'.format(flight_info))
#         st.subheader('Map Visualization', divider='rainbow')
#         st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
#         return gdf

#     geo_df = get_traffic_gdf()
#     if airport == 0:
#         fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
#                             color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
#                             hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
#         'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
#     elif airport == 1:
#         fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
#                             color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
#                             hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
#         'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
#         fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude",
#                                         hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0])
#     else: None
#     fig.update_layout(mapbox_style="carto-darkmatter")
#     fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
#     # out = fig.show())
#     out = st.plotly_chart(fig, theme=None)
#     return out
# st.set_page_config(
#     layout="wide"
# )
# image = Image.open('logo.png')
# add_selectbox = st.sidebar.image(
#     image, width=150
# )
# add_selectbox = st.sidebar.subheader(
#     "Configure Map",divider='rainbow'
# )
# with st.sidebar:
#     Refresh = st.button('Update Map', key=1)
#     on = st.toggle('View Airports')
#     if on:
#         air_port = 1
#         st.write(':rainbow[Nice Work Buddy!]')
#         st.write('Now Airports are Visible')
#     else:
#         air_port=0
#     view = st.slider('Increase Flight Visibility',1,6,2)
#     st.write("You Selected:", view)
#     cou = st.text_input('Type Country Name', 'north america')
#     st.write('The current Country name is', cou)
#     time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
#     st.write('The current Time Zone is', time)
#     info = st.selectbox(
#     'Select Flight Information',
#     ('baro_altitude',
#         'on_ground', 'velocity',
#         'geo_altitude'))
#     st.write('Plotting the data of Flight:', info)
#     clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
#     if clr == "rainbow":
#         st.write('The current color is', "****:rainbow[Rainbow]****")
#     elif clr == 'ice':
#         st.write('The current color is', "****:blue[Ice]****")
#     elif clr == 'hot':
#         st.write('The current color is', "****:red[Hot]****")
#     else: None
# # with st.spinner('Wait!, We Requesting API Data...'):
# # try:
# flight_tracking(flight_view_level=view, country=cou,flight_info=info,
#             local_time_zone=time, airport=air_port, color=clr)
# st.subheader('Ask your Questions!', divider='rainbow')
# st.write("Google's TAPAS base LLM model 🤖")
# geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
# question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
# result = query_flight_data(geo_df, question)
# st.markdown(result)
# # except TypeError:
# #     st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
# #     st.button('Re-run', type="primary")
# # st.snow()
 
import streamlit as st
from huggingface_hub import InferenceClient
import os

hf_token = os.getenv("HF_TOKEN")
# Set up the Hugging Face Inference Client
client = InferenceClient(
    provider="together",  # Replace with the correct provider if needed
    api_key= hf_token  # Replace with your Hugging Face API key
)

# Streamlit app title
st.title("🤖 Deepseek R1 Chatbot")
st.write("Chat with the Deepseek R1 model powered by Hugging Face Inference API.")

# Initialize session state to store chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat history
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# User input
if prompt := st.chat_input("What would you like to ask?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    # Generate response from Deepseek R1 model
    with st.spinner("Thinking..."):
        try:
            # Prepare the messages for the model
            messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]
            
            # Call the Hugging Face Inference API
            completion = client.chat.completions.create(
                model="deepseek-ai/DeepSeek-R1",  # Replace with the correct model name
                messages=messages,
                max_tokens=500
            )
            
            # Extract the model's response
            response = completion.choices[0].message.content

            # Add model's response to chat history
            st.session_state.messages.append({"role": "assistant", "content": response})
            with st.chat_message("assistant"):
                st.markdown(response)
        
        except Exception as e:
            st.error(f"An error occurred: {e}")