Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| from transformers import pipeline | |
| from stqdm import stqdm | |
| from simplet5 import SimpleT5 | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| def load_t5(): | |
| model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") | |
| tokenizer = AutoTokenizer.from_pretrained("t5-base") | |
| return model, tokenizer | |
| def custom_model(): | |
| return pipeline("summarization", model="my_awesome_sum/") | |
| def convert_df(df): | |
| # IMPORTANT: Cache the conversion to prevent computation on every rerun | |
| return df.to_csv(index=False).encode("utf-8") | |
| def load_one_line_summarizer(model): | |
| return model.load_model("t5", "snrspeaks/t5-one-line-summary") | |
| st.set_page_config(layout="wide", page_title="Amazon Review Summarizer") | |
| st.title("Amazon Review Summarizer") | |
| uploaded_file = st.file_uploader("Choose a file", type=["xlsx", "xls", "csv"]) | |
| summarizer_option = st.selectbox( | |
| "Select Summarizer", | |
| ("Custom trained on the dataset", "t5-base", "t5-one-line-summary"), | |
| ) | |
| hide_streamlit_style = """ | |
| <style> | |
| #MainMenu {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| </style> | |
| """ | |
| st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
| ps = st.empty() | |
| if st.button("Process"): | |
| if uploaded_file is not None: | |
| if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]: | |
| df = pd.read_excel(uploaded_file, engine="openpyxl") | |
| if uploaded_file.name.split(".")[-1] in [".csv"]: | |
| df = pd.read_csv(uploaded_file) | |
| columns = df.columns.values.tolist() | |
| columns = [x.lower() for x in columns] | |
| df.columns = columns | |
| print(summarizer_option) | |
| if summarizer_option == "Custom trained on the dataset": | |
| model = custom_model() | |
| print(summarizer_option) | |
| text = df["text"].values.tolist() | |
| progress_text = "Summarization in progress. Please wait." | |
| summary = [] | |
| for x in stqdm(range(len(text))): | |
| try: | |
| summary.append( | |
| model( | |
| f"summarize: {text[x]}", max_length=50, early_stopping=True | |
| )[0]["summary_text"] | |
| ) | |
| except: | |
| pass | |
| output = pd.DataFrame( | |
| {"text": df["text"].values.tolist(), "summary": summary} | |
| ) | |
| csv = convert_df(output) | |
| st.download_button( | |
| label="Download data as CSV", | |
| data=csv, | |
| file_name=f"{summarizer_option}_df.csv", | |
| mime="text/csv", | |
| ) | |
| if summarizer_option == "t5-base": | |
| model, tokenizer = load_t5() | |
| text = df["text"].values.tolist() | |
| summary = [] | |
| for x in stqdm(range(len(text))): | |
| tokens_input = tokenizer.encode( | |
| "summarize: " + text[x], | |
| return_tensors="pt", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| ) | |
| summary_ids = model.generate( | |
| tokens_input, | |
| min_length=80, | |
| max_length=150, | |
| length_penalty=20, | |
| num_beams=2, | |
| ) | |
| summary_gen = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
| summary.append(summary_gen) | |
| output = pd.DataFrame( | |
| {"text": df["text"].values.tolist(), "summary": summary} | |
| ) | |
| csv = convert_df(output) | |
| st.download_button( | |
| label="Download data as CSV", | |
| data=csv, | |
| file_name=f"{summarizer_option}_df.csv", | |
| mime="text/csv", | |
| ) | |
| if summarizer_option == "t5-one-line-summary": | |
| model = SimpleT5() | |
| text = df["text"].values.tolist() | |
| load_one_line_summarizer(model=model) | |
| summary = [] | |
| for x in stqdm(range(len(text))): | |
| try: | |
| summary.append(model.predict(text[x])[0]) | |
| except: | |
| pass | |
| output = pd.DataFrame( | |
| {"text": df["text"].values.tolist(), "summary": summary} | |
| ) | |
| csv = convert_df(output) | |
| st.download_button( | |
| label="Download data as CSV", | |
| data=csv, | |
| file_name=f"{summarizer_option}_df.csv", | |
| mime="text/csv", | |
| ) | |