File size: 4,683 Bytes
6f595b5
 
 
 
 
 
 
 
915e04a
6f595b5
 
 
 
 
 
 
3086575
6f595b5
 
 
 
 
 
 
3086575
6f595b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0302fc1
 
 
 
 
 
 
e7ee4c6
6f595b5
 
 
e7ee4c6
6f595b5
e7ee4c6
 
 
6f595b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3086575
6f595b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3086575
6f595b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3086575
6f595b5
 
 
 
 
3086575
6f595b5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import streamlit as st
import pandas as pd
from transformers import pipeline
from stqdm import stqdm
from simplet5 import SimpleT5
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM


@st.cache
def load_t5():
    model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

    tokenizer = AutoTokenizer.from_pretrained("t5-base")
    return model, tokenizer


@st.cache
def custom_model():
    return pipeline("summarization", model="my_awesome_sum/")


@st.cache
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv(index=False).encode("utf-8")


@st.cache
def load_one_line_summarizer(model):
    return model.load_model("t5", "snrspeaks/t5-one-line-summary")


st.set_page_config(layout="wide", page_title="Amazon Review Summarizer")
st.title("Amazon Review Summarizer")

uploaded_file = st.file_uploader("Choose a file", type=["xlsx", "xls", "csv"])
summarizer_option = st.selectbox(
    "Select Summarizer",
    ("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
)
hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

ps = st.empty()
if st.button("Process"):
    if uploaded_file is not None:
        if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:

            df = pd.read_excel(uploaded_file, engine="openpyxl")
        if uploaded_file.name.split(".")[-1] in [".csv"]:
            df = pd.read_csv(uploaded_file)
        columns = df.columns.values.tolist()
        columns = [x.lower() for x in columns]
        df.columns = columns
        print(summarizer_option)
        if summarizer_option == "Custom trained on the dataset":
            model = custom_model()
            print(summarizer_option)
            text = df["text"].values.tolist()
            progress_text = "Summarization in progress. Please wait."
            summary = []

            for x in stqdm(range(len(text))):
                try:
                    summary.append(
                        model(
                            f"summarize: {text[x]}", max_length=50, early_stopping=True
                        )[0]["summary_text"]
                    )
                except:
                    pass
            output = pd.DataFrame(
                {"text": df["text"].values.tolist(), "summary": summary}
            )
            csv = convert_df(output)
            st.download_button(
                label="Download data as CSV",
                data=csv,
                file_name=f"{summarizer_option}_df.csv",
                mime="text/csv",
            )
        if summarizer_option == "t5-base":
            model, tokenizer = load_t5()
            text = df["text"].values.tolist()
            summary = []
            for x in stqdm(range(len(text))):

                tokens_input = tokenizer.encode(
                    "summarize: " + text[x],
                    return_tensors="pt",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                )
                summary_ids = model.generate(
                    tokens_input,
                    min_length=80,
                    max_length=150,
                    length_penalty=20,
                    num_beams=2,
                )
                summary_gen = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
                summary.append(summary_gen)

            output = pd.DataFrame(
                {"text": df["text"].values.tolist(), "summary": summary}
            )
            csv = convert_df(output)
            st.download_button(
                label="Download data as CSV",
                data=csv,
                file_name=f"{summarizer_option}_df.csv",
                mime="text/csv",
            )

        if summarizer_option == "t5-one-line-summary":
            model = SimpleT5()
            text = df["text"].values.tolist()

            load_one_line_summarizer(model=model)

            summary = []
            for x in stqdm(range(len(text))):
                try:
                    summary.append(model.predict(text[x])[0])
                except:
                    pass
            output = pd.DataFrame(
                {"text": df["text"].values.tolist(), "summary": summary}
            )
            csv = convert_df(output)
            st.download_button(
                label="Download data as CSV",
                data=csv,
                file_name=f"{summarizer_option}_df.csv",
                mime="text/csv",
            )