zs38's picture
update
a0e3aec
raw
history blame
3.59 kB
import os
import sys
sys.path.append('app/')
import torch
import spaces
import safetensors
import gradio as gr
from PIL import Image
from loguru import logger
from torchvision import transforms
from huggingface_hub import hf_hub_download, login
from diffusers import FluxPipeline, FluxTransformer2DModel
from projection import ImageEncoder
from transformer_flux_custom import FluxTransformer2DModel as FluxTransformer2DModelWithIP
model_config = './config.json'
pretrained_model_name = 'black-forest-labs/FLUX.1-dev'
adapter_path = 'model.safetensors'
adapter_repo_id = "ashen0209/Flux-Character-Consitancy"
conditioner_base_model = 'eva02_large_patch14_448.mim_in22k_ft_in1k'
conditioner_layer_num = 12
device = "cuda" if torch.cuda.is_available() else "cpu"
output_dim = 4096
logger.info("init model")
model = FluxTransformer2DModelWithIP.from_config(model_config, torch_dtype=torch.bfloat16) # type: ignore
logger.info("load model")
copy = FluxTransformer2DModel.from_pretrained(pretrained_model_name, subfolder='transformer', torch_dtype=torch.bfloat16)
model.load_state_dict(copy.state_dict(), strict=False)
del copy
logger.info("load proj")
extra_embedder = ImageEncoder(output_dim, layer_num=conditioner_layer_num, seq_len=2, device=device, base_model=conditioner_base_model).to(device=device, dtype=torch.bfloat16)
logger.info("load pipe")
pipe = FluxPipeline.from_pretrained(pretrained_model_name, transformer=model, torch_dtype=torch.bfloat16)
pipe.to(dtype=torch.bfloat16, device=device)
logger.info("download adapter")
login(token=os.environ['HF_TOKEN'])
file_path = hf_hub_download(repo_id=adapter_repo_id, filename=adapter_path)
logger.info("load adapter")
state_dict = safetensors.torch.load_file(adapter_path)
state_dict = {'.'.join(k.split('.')[1:]): state_dict[k] for k in state_dict.keys()}
diff = model.load_state_dict(state_dict, strict=False)
diff = extra_embedder.load_state_dict(state_dict, strict=False)
IMAGE_PROCESS_TRANSFORM = transforms.Compose([
transforms.Resize((448, 448)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4815, 0.4578, 0.4082], std=[0.2686, 0.2613, 0.276])
])
@spaces.GPU
def generate_image(ref_image, prompt, height=512, width=512, num_steps=25, guidance_scale=3.5, ip_scale=1.0):
nonlocal pipe
with torch.no_grad():
image_refs = map(torch.stack, [
[IMAGE_PROCESS_TRANSFORM(i) for i in [ref_image, ]]
])
image_refs = [i.to(dtype=torch.bfloat16, device='cuda') for i in image_refs]
prompt_embeds, pooled_prompt_embeds, txt_ids = pipe.encode_prompt(prompt, prompt)
visual_prompt_embeds = extra_embedder(image_refs)
prompt_embeds_with_ref = torch.cat([prompt_embeds, visual_prompt_embeds], dim=1)
pipe.transformer.ip_scale = ip_scale
image = pipe(
prompt_embeds=prompt_embeds_with_ref,
pooled_prompt_embeds=pooled_prompt_embeds,
# negative_prompt_embeds=negative_prompt_embeds,
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
).images[0]
return image
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.Image(type="pil", label="Upload Reference Subject Image"),
gr.Textbox(lines=2, placeholder="Describe the desired contents", label="Description Text"),
],
outputs=gr.Image(type="pil", label="Generated Image"),
live=True
)
if __name__ == "__main__":
iface.launch()