import os import sys sys.path.append('app/') import torch import spaces import safetensors import gradio as gr from PIL import Image from loguru import logger from torchvision import transforms from huggingface_hub import hf_hub_download, login from diffusers import FluxPipeline, FluxTransformer2DModel from projection import ImageEncoder from transformer_flux_custom import FluxTransformer2DModel as FluxTransformer2DModelWithIP model_config = './config.json' pretrained_model_name = 'black-forest-labs/FLUX.1-dev' adapter_path = 'model.safetensors' adapter_repo_id = "ashen0209/Flux-Character-Consitancy" conditioner_base_model = 'eva02_large_patch14_448.mim_in22k_ft_in1k' conditioner_layer_num = 12 device = "cuda" if torch.cuda.is_available() else "cpu" output_dim = 4096 logger.info("init model") model = FluxTransformer2DModelWithIP.from_config(model_config, torch_dtype=torch.bfloat16) # type: ignore logger.info("load model") copy = FluxTransformer2DModel.from_pretrained(pretrained_model_name, subfolder='transformer', torch_dtype=torch.bfloat16) model.load_state_dict(copy.state_dict(), strict=False) del copy logger.info("load proj") extra_embedder = ImageEncoder(output_dim, layer_num=conditioner_layer_num, seq_len=2, device=device, base_model=conditioner_base_model).to(device=device, dtype=torch.bfloat16) logger.info("load pipe") pipe = FluxPipeline.from_pretrained(pretrained_model_name, transformer=model, torch_dtype=torch.bfloat16) pipe.to(dtype=torch.bfloat16, device=device) logger.info("download adapter") login(token=os.environ['HF_TOKEN']) file_path = hf_hub_download(repo_id=adapter_repo_id, filename=adapter_path) logger.info("load adapter") state_dict = safetensors.torch.load_file(adapter_path) state_dict = {'.'.join(k.split('.')[1:]): state_dict[k] for k in state_dict.keys()} diff = model.load_state_dict(state_dict, strict=False) diff = extra_embedder.load_state_dict(state_dict, strict=False) IMAGE_PROCESS_TRANSFORM = transforms.Compose([ transforms.Resize((448, 448)), transforms.ToTensor(), transforms.Normalize(mean=[0.4815, 0.4578, 0.4082], std=[0.2686, 0.2613, 0.276]) ]) @spaces.GPU def generate_image(ref_image, prompt, height=512, width=512, num_steps=25, guidance_scale=3.5, ip_scale=1.0): nonlocal pipe with torch.no_grad(): image_refs = map(torch.stack, [ [IMAGE_PROCESS_TRANSFORM(i) for i in [ref_image, ]] ]) image_refs = [i.to(dtype=torch.bfloat16, device='cuda') for i in image_refs] prompt_embeds, pooled_prompt_embeds, txt_ids = pipe.encode_prompt(prompt, prompt) visual_prompt_embeds = extra_embedder(image_refs) prompt_embeds_with_ref = torch.cat([prompt_embeds, visual_prompt_embeds], dim=1) pipe.transformer.ip_scale = ip_scale image = pipe( prompt_embeds=prompt_embeds_with_ref, pooled_prompt_embeds=pooled_prompt_embeds, # negative_prompt_embeds=negative_prompt_embeds, # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, height=height, width=width, num_inference_steps=num_steps, guidance_scale=guidance_scale, ).images[0] return image iface = gr.Interface( fn=generate_image, inputs=[ gr.Image(type="pil", label="Upload Reference Subject Image"), gr.Textbox(lines=2, placeholder="Describe the desired contents", label="Description Text"), ], outputs=gr.Image(type="pil", label="Generated Image"), live=True ) if __name__ == "__main__": iface.launch()