Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | |
# Set a writable cache directory | |
os.environ["HF_HOME"] = "/tmp/huggingface" | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
# Model setup | |
MODEL_NAME = "deepseek-ai/deepseek-llm-7b-base" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
DTYPE = torch.float16 if DEVICE == "cuda" else torch.bfloat16 | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, torch_dtype=DTYPE, device_map="auto" | |
) | |
# Set up generation config | |
generation_config = GenerationConfig.from_pretrained(MODEL_NAME) | |
generation_config.pad_token_id = generation_config.eos_token_id | |
generation_config.use_cache = True # Speed up decoding | |
# FastAPI app | |
app = FastAPI() | |
# Request payload | |
class TextGenerationRequest(BaseModel): | |
prompt: str | |
max_tokens: int = 512 # Default to 512 for better performance | |
async def generate_text(request: TextGenerationRequest): | |
try: | |
# Tokenize input and move tensors to the correct device | |
inputs = tokenizer(request.prompt, return_tensors="pt", padding=True, truncation=True).to(DEVICE) | |
# Use no_grad() for faster inference | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=request.max_tokens, | |
do_sample=True, # Enables sampling (use False for deterministic results) | |
temperature=0.7, # Adjust for creativity (lower = more conservative) | |
top_k=50, # Consider top 50 token choices | |
top_p=0.9, # Nucleus sampling (reduces unlikely words) | |
repetition_penalty=1.1, # Prevents looping responses | |
) | |
# Decode generated tokens | |
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
return {"generated_text": result} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |