import os import torch from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # Set a writable cache directory os.environ["HF_HOME"] = "/tmp/huggingface" os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" # Model setup MODEL_NAME = "deepseek-ai/deepseek-llm-7b-base" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" DTYPE = torch.float16 if DEVICE == "cuda" else torch.bfloat16 # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=DTYPE, device_map="auto" ) # Set up generation config generation_config = GenerationConfig.from_pretrained(MODEL_NAME) generation_config.pad_token_id = generation_config.eos_token_id generation_config.use_cache = True # Speed up decoding # FastAPI app app = FastAPI() # Request payload class TextGenerationRequest(BaseModel): prompt: str max_tokens: int = 512 # Default to 512 for better performance @app.post("/generate") async def generate_text(request: TextGenerationRequest): try: # Tokenize input and move tensors to the correct device inputs = tokenizer(request.prompt, return_tensors="pt", padding=True, truncation=True).to(DEVICE) # Use no_grad() for faster inference with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=request.max_tokens, do_sample=True, # Enables sampling (use False for deterministic results) temperature=0.7, # Adjust for creativity (lower = more conservative) top_k=50, # Consider top 50 token choices top_p=0.9, # Nucleus sampling (reduces unlikely words) repetition_penalty=1.1, # Prevents looping responses ) # Decode generated tokens result = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] return {"generated_text": result} except Exception as e: raise HTTPException(status_code=500, detail=str(e))