File size: 1,047 Bytes
d9ded01
b2c1928
ea0af80
 
b2c1928
d9ded01
 
b2c1928
 
d36dc81
ba41c7f
d9ded01
ba41c7f
 
 
 
 
d36dc81
 
 
b2c1928
 
eb66cb5
b2c1928
ea0af80
 
ba41c7f
 
b2c1928
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

MODEL_NAME = "bigcode/starcoderbase-1b"
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

# Force CPU mode
device = "cpu"  # Change this from "cuda"

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)

# Ensure the tokenizer has a pad token set
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token  # Set pad_token to eos_token

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    token=HF_TOKEN,
    torch_dtype=torch.float16,  # Keep memory low
    device_map="auto",  # Still allows auto placement
    trust_remote_code=True
).to(device)

def generate_code(prompt: str, max_tokens: int = 256):
    inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(device)  # Enable padding
    output = model.generate(**inputs, max_new_tokens=max_tokens, pad_token_id=tokenizer.pad_token_id)  # Explicit pad_token_id
    return tokenizer.decode(output[0], skip_special_tokens=True)