Spaces:
Sleeping
Sleeping
Commit
·
b2c1928
1
Parent(s):
f279b31
updated model.py
Browse files
model.py
CHANGED
@@ -1,63 +1,23 @@
|
|
1 |
-
# import os
|
2 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
# import torch
|
4 |
-
|
5 |
-
# # Correct model name
|
6 |
-
# MODEL_NAME = "bigcode/starcoder"
|
7 |
-
|
8 |
-
# # Ensure the token is provided
|
9 |
-
# HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
10 |
-
# if not HF_TOKEN:
|
11 |
-
# raise ValueError("Missing Hugging Face token. Set HUGGINGFACE_TOKEN as an environment variable.")
|
12 |
-
|
13 |
-
# # Set device
|
14 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
|
16 |
-
# # Load tokenizer with authentication
|
17 |
-
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
18 |
-
|
19 |
-
# # Load model with optimizations
|
20 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
21 |
-
# MODEL_NAME,
|
22 |
-
# token=HF_TOKEN,
|
23 |
-
# torch_dtype=torch.float16, # Reduce memory usage
|
24 |
-
# low_cpu_mem_usage=True, # Optimize loading
|
25 |
-
# device_map="auto", # Automatic device placement
|
26 |
-
# offload_folder="offload" # Offload to disk if needed
|
27 |
-
# ).to(device)
|
28 |
-
|
29 |
-
# def generate_code(prompt: str, max_tokens: int = 256):
|
30 |
-
# """Generates code based on the input prompt."""
|
31 |
-
# if not prompt.strip():
|
32 |
-
# return "Error: Empty prompt provided."
|
33 |
-
|
34 |
-
# inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
35 |
-
# output = model.generate(**inputs, max_new_tokens=max_tokens)
|
36 |
-
# return tokenizer.decode(output[0], skip_special_tokens=True)
|
37 |
-
|
38 |
import os
|
39 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
import torch
|
41 |
|
42 |
-
MODEL_NAME = "bigcode/starcoderbase-
|
43 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
bnb_4bit_quant_type="nf4",
|
48 |
-
bnb_4bit_compute_dtype=torch.float16
|
49 |
-
)
|
50 |
|
51 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
MODEL_NAME,
|
54 |
token=HF_TOKEN,
|
55 |
-
|
56 |
-
device_map="auto",
|
57 |
trust_remote_code=True
|
58 |
-
)
|
59 |
|
60 |
def generate_code(prompt: str, max_tokens: int = 256):
|
61 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
62 |
output = model.generate(**inputs, max_new_tokens=max_tokens)
|
63 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
+
MODEL_NAME = "bigcode/starcoderbase-1b"
|
6 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
7 |
|
8 |
+
# Force CPU mode
|
9 |
+
device = "cpu" # Change this from "cuda"
|
|
|
|
|
|
|
10 |
|
11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
MODEL_NAME,
|
14 |
token=HF_TOKEN,
|
15 |
+
torch_dtype=torch.float16, # Keep memory low
|
16 |
+
device_map="auto", # Still allows auto placement
|
17 |
trust_remote_code=True
|
18 |
+
).to(device)
|
19 |
|
20 |
def generate_code(prompt: str, max_tokens: int = 256):
|
21 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
22 |
output = model.generate(**inputs, max_new_tokens=max_tokens)
|
23 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|