Spaces:
Sleeping
Sleeping
import re | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
from datasets import load_dataset | |
from PIL import Image | |
import torch | |
import gradio as gr | |
#image = gr.Image(shape=(224, 224)) | |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") | |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
def classify_image(inp): | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
pixel_values = processor(inp, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
return processor.token2json(sequence) | |
#title = "Gradio Image Reading" | |
#gr.Interface(fn=classify_image,"image","text").launch() | |
gr.Interface(classify_image, "image","text").launch() |