arunsingh8419 commited on
Commit
e8fe2fd
·
verified ·
1 Parent(s): b85f79e

created aap.py demo donut

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from transformers import DonutProcessor, VisionEncoderDecoderModel
3
+ from datasets import load_dataset
4
+ from PIL import Image
5
+ import torch
6
+ import gradio as gr
7
+
8
+ #image = gr.Image(shape=(224, 224))
9
+ processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
10
+ model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ model.to(device)
13
+
14
+ def classify_image(inp):
15
+ task_prompt = "<s_cord-v2>"
16
+ decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
17
+ pixel_values = processor(inp, return_tensors="pt").pixel_values
18
+ outputs = model.generate(
19
+ pixel_values.to(device),
20
+ decoder_input_ids=decoder_input_ids.to(device),
21
+ max_length=model.decoder.config.max_position_embeddings,
22
+ pad_token_id=processor.tokenizer.pad_token_id,
23
+ eos_token_id=processor.tokenizer.eos_token_id,
24
+ use_cache=True,
25
+ bad_words_ids=[[processor.tokenizer.unk_token_id]],
26
+ return_dict_in_generate=True,
27
+ )
28
+ sequence = processor.batch_decode(outputs.sequences)[0]
29
+ sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
30
+ sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
31
+ return processor.token2json(sequence)
32
+
33
+ #title = "Gradio Image Reading"
34
+ #gr.Interface(fn=classify_image,"image","text").launch()
35
+ gr.Interface(classify_image, "image","text").launch()