File size: 7,080 Bytes
8ea927a
 
410031a
 
41813c2
 
48b792e
 
b2968ad
8ea927a
0ea720c
 
 
 
 
 
 
 
 
 
 
48b792e
0ea720c
 
 
 
 
 
e6f14fa
b31a1e4
 
 
 
 
ae1288e
9ec289c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31a1e4
ae1288e
 
8ea927a
0ea720c
ae1288e
0ea720c
7af8c4a
 
b2968ad
 
 
7af8c4a
a4b8ea3
b2968ad
 
 
 
a4b8ea3
 
a5dd2fe
a4b8ea3
0ea720c
77f6b05
9ec289c
0ea720c
a4b8ea3
0ea720c
77f6b05
9ec289c
0ea720c
a4b8ea3
41813c2
8ea927a
0ea720c
48b792e
4f2de6f
 
ea82e47
 
4f2de6f
0ea720c
a5dd2fe
ea82e47
 
 
 
 
 
 
4f2de6f
 
ea82e47
b44dadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea927a
b44dadb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
import requests
from bs4 import BeautifulSoup
from ast import literal_eval

# Function to scrape text from a website
def scrape_text_from_url(url):
    response = requests.get(url)
    if response.status_code != 200:
        return "Error: Could not retrieve content from URL."
    soup = BeautifulSoup(response.text, "html.parser")
    paragraphs = soup.find_all("p")
    text = " ".join([p.get_text() for p in paragraphs])
    return text

def generate_knowledge_graph(api_key, user_input):
    openai.api_key = api_key

    # Check if input is URL or text
    if user_input.startswith("http://") or user_input.startswith("https://"):
        user_input = scrape_text_from_url(user_input)

    # Chamar a API da OpenAI
    completion = openai.ChatCompletion.create(
        model="gpt-3.5-turbo-16k",
        messages=[
            {
                "role": "user",
                "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
            }
        ],
        functions=[
            {
                "name": "knowledge_graph",
                "description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "metadata": {
                            "type": "object",
                            "properties": {
                                "createdDate": {"type": "string"},
                                "lastUpdated": {"type": "string"},
                                "description": {"type": "string"},
                            },
                        },
                        "nodes": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "id": {"type": "string"},
                                    "label": {"type": "string"},
                                    "type": {"type": "string"},
                                    "color": {"type": "string"},  # Added color property
                                    "properties": {
                                        "type": "object",
                                        "description": "Additional attributes for the node",
                                    },
                                },
                                "required": [
                                    "id",
                                    "label",
                                    "type",
                                    "color",
                                ],  # Added color to required
                            },
                        },
                        "edges": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "from": {"type": "string"},
                                    "to": {"type": "string"},
                                    "relationship": {"type": "string"},
                                    "direction": {"type": "string"},
                                    "color": {"type": "string"},  # Added color property
                                    "properties": {
                                        "type": "object",
                                        "description": "Additional attributes for the edge",
                                    },
                                },
                                "required": [
                                    "from",
                                    "to",
                                    "relationship",
                                    "color",
                                ],  # Added color to required
                            },
                        },
                    },
                    "required": ["nodes", "edges"],
                },
            }
        ],
        function_call={"name": "knowledge_graph"},
    )

    response_data = completion.choices[0]["message"]["function_call"]["arguments"]

    try:
        if isinstance(response_data, str):
            response_data = literal_eval(response_data)
    except (ValueError, SyntaxError) as e:
        print(f"Error in decoding JSON or literal_eval: {e}")
        return "Error in decoding JSON"

    if not isinstance(response_data, dict):
        print("Unexpected data type for response_data")
        return "Error: Unexpected data type"

    dot = Digraph(comment="Knowledge Graph", format='png')
    dot.attr(dpi='300')
    dot.attr(bgcolor='white')
    dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')

    for node in response_data.get("nodes", []):
        dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))

    dot.attr('edge', color='black', fontcolor='black')

    for edge in response_data.get("edges", []):
        dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))

    image_data = dot.pipe()
    image = Image.open(io.BytesIO(image_data))

    return image

title_and_description = """
# Instagraph - Knowledge Graph Generator
Created by [@artificialguybr](https://twitter.com/artificialguybr)  
Code by [Instagraph on GitHub](https://github.com/yoheinakajima/instagraph)

Enter your OpenAI API Key and a question, and let the AI create a detailed knowledge graph for you.

## Features
- **URL**: You can now input a URL to scrape text for generating the knowledge graph.
- **Security**: Rest assured, the code is open for your inspection in the files. There's no risk in using your OpenAI API key here.
- **Best View**: For the best visualization, consider downloading the generated image.
- **Flexible Input**: You can either type what you want the API to generate as a graph or use a URL for this purpose.

Feel free to explore and generate your own knowledge graphs!
"""


with gr.Blocks() as app:
    gr.Markdown(title_and_description)
    
    with gr.Row():
        with gr.Column():
            result_image = gr.Image(type="pil", label="Generated Knowledge Graph")
            
    with gr.Row():
        with gr.Column():
            api_key = gr.Textbox(label="OpenAI API Key", type="password")
            user_input = gr.Textbox(label="User Input for Graph or URL", type="text")
            run_btn = gr.Button("Generate")
            
    run_btn.click(
        generate_knowledge_graph,
        inputs=[api_key, user_input],
        outputs=[result_image]
    )

app.queue(concurrency_count=10)

print("Iniciando a interface Gradio...")
app.launch()