Spaces:
Sleeping
Sleeping
Commit
·
0ea720c
1
Parent(s):
9834f8b
Update app.py
Browse files
app.py
CHANGED
@@ -7,20 +7,25 @@ import io
|
|
7 |
import requests
|
8 |
from bs4 import BeautifulSoup
|
9 |
|
10 |
-
# Function to
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
text =
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# Function to process user input and call OpenAI API
|
22 |
-
def process_user_input(api_key, user_input):
|
23 |
openai.api_key = api_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
completion = openai.ChatCompletion.create(
|
25 |
model="gpt-3.5-turbo-16k",
|
26 |
messages=[
|
@@ -96,55 +101,68 @@ def process_user_input(api_key, user_input):
|
|
96 |
],
|
97 |
function_call={"name": "knowledge_graph"},
|
98 |
)
|
|
|
99 |
response_data = completion.choices[0]["message"]["function_call"]["arguments"]
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
#
|
103 |
-
|
104 |
dot = Digraph(comment="Knowledge Graph", format='png')
|
105 |
dot.attr(dpi='300')
|
106 |
-
dot.attr(bgcolor='
|
|
|
|
|
107 |
dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')
|
|
|
108 |
for node in response_data.get("nodes", []):
|
109 |
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
|
|
|
|
|
110 |
dot.attr('edge', color='black', fontcolor='black')
|
|
|
111 |
for edge in response_data.get("edges", []):
|
112 |
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
|
|
|
|
|
|
|
113 |
image_data = dot.pipe()
|
114 |
image = Image.open(io.BytesIO(image_data))
|
115 |
-
return image
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
if response.status_code != 200:
|
121 |
-
return "Error: Could not retrieve content from URL."
|
122 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
123 |
-
paragraphs = soup.find_all("p")
|
124 |
-
text = " ".join([p.get_text() for p in paragraphs])
|
125 |
-
return text
|
126 |
|
|
|
127 |
title_and_description = """
|
128 |
# Instagraph - Knowledge Graph Generator
|
129 |
|
130 |
**Created by [ArtificialGuyBR](https://twitter.com/ArtificialGuyBR)**
|
131 |
|
132 |
-
This interactive knowledge graph generator
|
133 |
-
If you provide text, it will generate a knowledge graph based on the text you provide.
|
134 |
-
If you provide a URL, it will scrape the content from the webpage and generate a knowledge graph from that.
|
135 |
|
136 |
-
|
137 |
"""
|
138 |
|
|
|
139 |
iface = gr.Interface(
|
140 |
-
fn=
|
141 |
inputs=[
|
142 |
gr.inputs.Textbox(label="OpenAI API Key", type="password"),
|
143 |
-
gr.inputs.Textbox(label="
|
144 |
],
|
145 |
outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"),
|
146 |
live=False,
|
147 |
title=title_and_description,
|
148 |
)
|
149 |
|
|
|
|
|
|
|
|
|
150 |
iface.launch()
|
|
|
7 |
import requests
|
8 |
from bs4 import BeautifulSoup
|
9 |
|
10 |
+
# Function to scrape text from a website
|
11 |
+
def scrape_text_from_url(url):
|
12 |
+
response = requests.get(url)
|
13 |
+
if response.status_code != 200:
|
14 |
+
return "Error: Could not retrieve content from URL."
|
15 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
16 |
+
paragraphs = soup.find_all("p")
|
17 |
+
text = " ".join([p.get_text() for p in paragraphs])
|
18 |
+
return text
|
19 |
+
|
20 |
+
def generate_knowledge_graph(api_key, user_input):
|
|
|
|
|
21 |
openai.api_key = api_key
|
22 |
+
|
23 |
+
# Check if input is URL or text
|
24 |
+
if user_input.startswith("http://") or user_input.startswith("https://"):
|
25 |
+
user_input = scrape_text_from_url(user_input)
|
26 |
+
|
27 |
+
# Chamar a API da OpenAI
|
28 |
+
print("Chamando a API da OpenAI...")
|
29 |
completion = openai.ChatCompletion.create(
|
30 |
model="gpt-3.5-turbo-16k",
|
31 |
messages=[
|
|
|
101 |
],
|
102 |
function_call={"name": "knowledge_graph"},
|
103 |
)
|
104 |
+
|
105 |
response_data = completion.choices[0]["message"]["function_call"]["arguments"]
|
106 |
+
print(response_data)
|
107 |
+
print("Type of response_data:", type(response_data))
|
108 |
+
print("Value of response_data:", response_data)
|
109 |
+
|
110 |
+
# Convert to dictionary if it's a string
|
111 |
+
if isinstance(response_data, str):
|
112 |
+
response_data = json.loads(response_data)
|
113 |
|
114 |
+
# Visualizar o conhecimento usando Graphviz
|
115 |
+
print("Gerando o conhecimento usando Graphviz...")
|
116 |
dot = Digraph(comment="Knowledge Graph", format='png')
|
117 |
dot.attr(dpi='300')
|
118 |
+
dot.attr(bgcolor='transparent')
|
119 |
+
|
120 |
+
# Estilizar os nós
|
121 |
dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')
|
122 |
+
|
123 |
for node in response_data.get("nodes", []):
|
124 |
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
|
125 |
+
|
126 |
+
# Estilizar as arestas
|
127 |
dot.attr('edge', color='black', fontcolor='black')
|
128 |
+
|
129 |
for edge in response_data.get("edges", []):
|
130 |
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
|
131 |
+
|
132 |
+
# Renderizar para o formato PNG
|
133 |
+
print("Renderizando o gráfico para o formato PNG...")
|
134 |
image_data = dot.pipe()
|
135 |
image = Image.open(io.BytesIO(image_data))
|
|
|
136 |
|
137 |
+
print("Gráfico gerado com sucesso!")
|
138 |
+
|
139 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# Define a title and description for the Gradio interface using Markdown
|
142 |
title_and_description = """
|
143 |
# Instagraph - Knowledge Graph Generator
|
144 |
|
145 |
**Created by [ArtificialGuyBR](https://twitter.com/ArtificialGuyBR)**
|
146 |
|
147 |
+
This interactive knowledge graph generator is inspired by [this GitHub project](https://github.com/yoheinakajima/instagraph/).
|
|
|
|
|
148 |
|
149 |
+
Enter your OpenAI API Key and a question, and let the AI create a detailed knowledge graph for you.
|
150 |
"""
|
151 |
|
152 |
+
# Create the Gradio interface with queueing enabled and concurrency_count set to 10
|
153 |
iface = gr.Interface(
|
154 |
+
fn=generate_knowledge_graph,
|
155 |
inputs=[
|
156 |
gr.inputs.Textbox(label="OpenAI API Key", type="password"),
|
157 |
+
gr.inputs.Textbox(label="User Input for Graph or URL", type="text"),
|
158 |
],
|
159 |
outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"),
|
160 |
live=False,
|
161 |
title=title_and_description,
|
162 |
)
|
163 |
|
164 |
+
# Enable queueing system for multiple users
|
165 |
+
iface.queue(concurrency_count=10)
|
166 |
+
|
167 |
+
print("Iniciando a interface Gradio...")
|
168 |
iface.launch()
|