File size: 7,008 Bytes
8ea927a
 
410031a
 
41813c2
 
48b792e
 
8ea927a
0ea720c
 
 
 
 
 
 
 
 
 
 
48b792e
0ea720c
 
 
 
 
 
e6f14fa
b31a1e4
 
 
 
 
ae1288e
9ec289c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31a1e4
ae1288e
 
8ea927a
0ea720c
ae1288e
7af8c4a
 
 
0ea720c
7af8c4a
 
 
 
 
 
 
 
0ea720c
 
 
a4b8ea3
0ea720c
a4b8ea3
 
a5dd2fe
0ea720c
 
a4b8ea3
0ea720c
77f6b05
9ec289c
0ea720c
 
a4b8ea3
0ea720c
77f6b05
9ec289c
0ea720c
 
a4b8ea3
41813c2
8ea927a
0ea720c
48b792e
0ea720c
4f2de6f
 
 
0ea720c
a5dd2fe
b44dadb
4f2de6f
 
b44dadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea927a
0ea720c
b44dadb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
import requests
from bs4 import BeautifulSoup

# Function to scrape text from a website
def scrape_text_from_url(url):
    response = requests.get(url)
    if response.status_code != 200:
        return "Error: Could not retrieve content from URL."
    soup = BeautifulSoup(response.text, "html.parser")
    paragraphs = soup.find_all("p")
    text = " ".join([p.get_text() for p in paragraphs])
    return text

def generate_knowledge_graph(api_key, user_input):
    openai.api_key = api_key

    # Check if input is URL or text
    if user_input.startswith("http://") or user_input.startswith("https://"):
        user_input = scrape_text_from_url(user_input)

    # Chamar a API da OpenAI
    completion = openai.ChatCompletion.create(
        model="gpt-3.5-turbo-16k",
        messages=[
            {
                "role": "user",
                "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
            }
        ],
        functions=[
            {
                "name": "knowledge_graph",
                "description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "metadata": {
                            "type": "object",
                            "properties": {
                                "createdDate": {"type": "string"},
                                "lastUpdated": {"type": "string"},
                                "description": {"type": "string"},
                            },
                        },
                        "nodes": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "id": {"type": "string"},
                                    "label": {"type": "string"},
                                    "type": {"type": "string"},
                                    "color": {"type": "string"},  # Added color property
                                    "properties": {
                                        "type": "object",
                                        "description": "Additional attributes for the node",
                                    },
                                },
                                "required": [
                                    "id",
                                    "label",
                                    "type",
                                    "color",
                                ],  # Added color to required
                            },
                        },
                        "edges": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "from": {"type": "string"},
                                    "to": {"type": "string"},
                                    "relationship": {"type": "string"},
                                    "direction": {"type": "string"},
                                    "color": {"type": "string"},  # Added color property
                                    "properties": {
                                        "type": "object",
                                        "description": "Additional attributes for the edge",
                                    },
                                },
                                "required": [
                                    "from",
                                    "to",
                                    "relationship",
                                    "color",
                                ],  # Added color to required
                            },
                        },
                    },
                    "required": ["nodes", "edges"],
                },
            }
        ],
        function_call={"name": "knowledge_graph"},
    )

    response_data = completion.choices[0]["message"]["function_call"]["arguments"]
    # Debugging: Print the type and value of response_data
    print(f"Type of response_data: {type(response_data)}")
    print(f"Value of response_data: {response_data}")

    try:
        # Convert to dictionary if it's a string
        if isinstance(response_data, str):
            response_data = json.loads(response_data)
    except json.JSONDecodeError as e:
        print(f"JSON Decode Error: {e}")
        return "Error in decoding JSON"
    
    # Convert to dictionary if it's a string
    if isinstance(response_data, str):
        response_data = json.loads(response_data)

    # Visualizar o conhecimento usando Graphviz
    dot = Digraph(comment="Knowledge Graph", format='png')
    dot.attr(dpi='300')
    dot.attr(bgcolor='white')

    # Estilizar os nós
    dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')

    for node in response_data.get("nodes", []):
        dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))

    # Estilizar as arestas
    dot.attr('edge', color='black', fontcolor='black')

    for edge in response_data.get("edges", []):
        dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))

    # Renderizar para o formato PNG
    image_data = dot.pipe()
    image = Image.open(io.BytesIO(image_data))

    return image

# Define a title and description for the Gradio interface using Markdown
title_and_description = """
# Instagraph - Knowledge Graph Generator

Enter your OpenAI API Key and a question, and let the AI create a detailed knowledge graph for you.

**New Feature:** You can now input a URL to scrape text for generating the knowledge graph. Rest assured, the code is open for your inspection to ensure safety.
"""

with gr.Blocks() as app:
    gr.Markdown(title_and_description)
    
    with gr.Row():
        with gr.Column():
            result_image = gr.Image(type="pil", label="Generated Knowledge Graph")
            
    with gr.Row():
        with gr.Column():
            api_key = gr.Textbox(label="OpenAI API Key", type="password")
            user_input = gr.Textbox(label="User Input for Graph or URL", type="text")
            run_btn = gr.Button("Generate")
            
    run_btn.click(
        generate_knowledge_graph,
        inputs=[api_key, user_input],
        outputs=[result_image]
    )

# Enable queueing system for multiple users
app.queue(concurrency_count=10)

print("Iniciando a interface Gradio...")
app.launch()