Spaces:
Sleeping
Sleeping
File size: 6,769 Bytes
8ea927a 410031a 41813c2 48b792e 8ea927a 0ea720c 48b792e 0ea720c e6f14fa b31a1e4 ae1288e 9ec289c b31a1e4 ae1288e 8ea927a 0ea720c ae1288e 0ea720c a4b8ea3 0ea720c a4b8ea3 0ea720c a4b8ea3 0ea720c 77f6b05 9ec289c 0ea720c a4b8ea3 0ea720c 77f6b05 9ec289c 0ea720c a4b8ea3 41813c2 8ea927a 0ea720c 48b792e 0ea720c 4f2de6f 0ea720c 4f2de6f 0ea720c 4f2de6f 0ea720c 8ea927a 0ea720c 410031a 9ec289c 0ea720c 9ec289c 4cc95b5 9ec289c 4f2de6f 8ea927a 0ea720c 4f2de6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
import requests
from bs4 import BeautifulSoup
# Function to scrape text from a website
def scrape_text_from_url(url):
response = requests.get(url)
if response.status_code != 200:
return "Error: Could not retrieve content from URL."
soup = BeautifulSoup(response.text, "html.parser")
paragraphs = soup.find_all("p")
text = " ".join([p.get_text() for p in paragraphs])
return text
def generate_knowledge_graph(api_key, user_input):
openai.api_key = api_key
# Check if input is URL or text
if user_input.startswith("http://") or user_input.startswith("https://"):
user_input = scrape_text_from_url(user_input)
# Chamar a API da OpenAI
print("Chamando a API da OpenAI...")
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{
"role": "user",
"content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
}
],
functions=[
{
"name": "knowledge_graph",
"description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
"parameters": {
"type": "object",
"properties": {
"metadata": {
"type": "object",
"properties": {
"createdDate": {"type": "string"},
"lastUpdated": {"type": "string"},
"description": {"type": "string"},
},
},
"nodes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {"type": "string"},
"label": {"type": "string"},
"type": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the node",
},
},
"required": [
"id",
"label",
"type",
"color",
], # Added color to required
},
},
"edges": {
"type": "array",
"items": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"relationship": {"type": "string"},
"direction": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the edge",
},
},
"required": [
"from",
"to",
"relationship",
"color",
], # Added color to required
},
},
},
"required": ["nodes", "edges"],
},
}
],
function_call={"name": "knowledge_graph"},
)
response_data = completion.choices[0]["message"]["function_call"]["arguments"]
print(response_data)
print("Type of response_data:", type(response_data))
print("Value of response_data:", response_data)
# Convert to dictionary if it's a string
if isinstance(response_data, str):
response_data = json.loads(response_data)
# Visualizar o conhecimento usando Graphviz
print("Gerando o conhecimento usando Graphviz...")
dot = Digraph(comment="Knowledge Graph", format='png')
dot.attr(dpi='300')
dot.attr(bgcolor='transparent')
# Estilizar os nós
dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')
for node in response_data.get("nodes", []):
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
# Estilizar as arestas
dot.attr('edge', color='black', fontcolor='black')
for edge in response_data.get("edges", []):
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
# Renderizar para o formato PNG
print("Renderizando o gráfico para o formato PNG...")
image_data = dot.pipe()
image = Image.open(io.BytesIO(image_data))
print("Gráfico gerado com sucesso!")
return image
# Define a title and description for the Gradio interface using Markdown
title_and_description = """
# Instagraph - Knowledge Graph Generator
**Created by [ArtificialGuyBR](https://twitter.com/ArtificialGuyBR)**
This interactive knowledge graph generator is inspired by [this GitHub project](https://github.com/yoheinakajima/instagraph/).
Enter your OpenAI API Key and a question, and let the AI create a detailed knowledge graph for you.
"""
# Create the Gradio interface with queueing enabled and concurrency_count set to 10
iface = gr.Interface(
fn=generate_knowledge_graph,
inputs=[
gr.inputs.Textbox(label="OpenAI API Key", type="password"),
gr.inputs.Textbox(label="User Input for Graph or URL", type="text"),
],
outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"),
live=False,
title=title_and_description,
)
# Enable queueing system for multiple users
iface.queue(concurrency_count=10)
print("Iniciando a interface Gradio...")
iface.launch()
|