|
|
|
|
|
""" |
|
Copied from https://github.com/meta-llama/llama-recipes/blob/9b3dabcaac78980eae40005bbc8b1a8276c82af3/src/llama_recipes/data/concatenator.py#L1 |
|
""" |
|
import random |
|
from itertools import chain |
|
from tqdm import tqdm |
|
|
|
|
|
from torch.utils.data import Dataset |
|
|
|
|
|
class Concatenator(object): |
|
def __init__(self, chunk_size=2048): |
|
self.chunk_size=chunk_size |
|
self.residual = {"input_ids": [], "attention_mask": []} |
|
|
|
def __call__(self, batch): |
|
concatenated_samples = { |
|
k: v + list(chain(*batch[k])) for k, v in self.residual.items() |
|
} |
|
|
|
total_length = len(concatenated_samples[list(concatenated_samples.keys())[0]]) |
|
|
|
if total_length >= self.chunk_size: |
|
chunk_num = total_length // self.chunk_size |
|
result = { |
|
k: [ |
|
v[i : i + self.chunk_size] |
|
for i in range(0, chunk_num * self.chunk_size, self.chunk_size) |
|
] |
|
for k, v in concatenated_samples.items() |
|
} |
|
self.residual = { |
|
k: v[(chunk_num * self.chunk_size) :] |
|
for k, v in concatenated_samples.items() |
|
} |
|
else: |
|
result = concatenated_samples |
|
self.residual = {k: [] for k in concatenated_samples.keys()} |
|
|
|
result["labels"] = result["input_ids"].copy() |
|
|
|
return result |
|
|
|
class ConcatDataset(Dataset): |
|
""" |
|
Concatenates or packs samples of a dataset into chunks of size `chunk_size` |
|
""" |
|
def __init__(self, dataset, chunk_size: int = 1024, seed: int = 42,) -> None: |
|
self.dataset = dataset |
|
self.chunk_size = chunk_size |
|
self.samples = [] |
|
buffer = { |
|
"input_ids": [], |
|
"attention_mask": [], |
|
"labels": [], |
|
} |
|
random.seed(seed) |
|
for sample in tqdm(self.dataset, desc="Preprocessing dataset", dynamic_ncols=True): |
|
buffer = {k: v + sample[k] for k,v in buffer.items()} |
|
|
|
while len(next(iter(buffer.values()))) > self.chunk_size: |
|
self.samples.append({k: v[:self.chunk_size] for k,v in buffer.items()}) |
|
buffer = {k: v[self.chunk_size:] for k,v in buffer.items()} |
|
|
|
self.filtered_samples = [] |
|
for s in self.samples: |
|
if sum(s['labels']) != chunk_size * -100: |
|
self.filtered_samples.append(s) |
|
if len(self.filtered_samples) < len(self.samples): |
|
print(f'OG dataset: {len(self.samples)} samples -> Filtered dataset: {len(self.filtered_samples)}') |
|
print(f'-> Filtered out {len(self.samples) - len(self.filtered_samples)} samples') |
|
|
|
def __getitem__(self, idx): |
|
return self.filtered_samples[idx] |
|
|
|
def __len__(self): |
|
return len(self.filtered_samples) |
|
|