File size: 3,094 Bytes
ae81e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
"""
Copied from https://github.com/meta-llama/llama-recipes/blob/9b3dabcaac78980eae40005bbc8b1a8276c82af3/src/llama_recipes/data/concatenator.py#L1
"""
import random
from itertools import chain
from tqdm import tqdm


from torch.utils.data import Dataset


class Concatenator(object):
    def __init__(self, chunk_size=2048):
        self.chunk_size=chunk_size
        self.residual = {"input_ids": [], "attention_mask": []}
        
    def __call__(self, batch):
        concatenated_samples = {
            k: v + list(chain(*batch[k])) for k, v in self.residual.items()
        }

        total_length = len(concatenated_samples[list(concatenated_samples.keys())[0]])

        if total_length >= self.chunk_size:
            chunk_num = total_length // self.chunk_size
            result = {
                k: [
                    v[i : i + self.chunk_size]
                    for i in range(0, chunk_num * self.chunk_size, self.chunk_size)
                ]
                for k, v in concatenated_samples.items()
            }
            self.residual = {
                k: v[(chunk_num * self.chunk_size) :]
                for k, v in concatenated_samples.items()
            }
        else:
            result = concatenated_samples
            self.residual = {k: [] for k in concatenated_samples.keys()}

        result["labels"] = result["input_ids"].copy()

        return result

class ConcatDataset(Dataset):
    """
    Concatenates or packs samples of a dataset into chunks of size `chunk_size`
    """
    def __init__(self, dataset, chunk_size: int = 1024, seed: int = 42,) -> None:
        self.dataset = dataset
        self.chunk_size = chunk_size
        self.samples = []
        buffer = {
            "input_ids": [],
            "attention_mask": [],
            "labels": [],
            }
        random.seed(seed)
        for sample in tqdm(self.dataset, desc="Preprocessing dataset", dynamic_ncols=True):
            buffer = {k: v + sample[k] for k,v in buffer.items()}
            
            while len(next(iter(buffer.values()))) > self.chunk_size:
                self.samples.append({k: v[:self.chunk_size] for k,v in buffer.items()})
                buffer = {k: v[self.chunk_size:] for k,v in buffer.items()}
        # Slow hack, but filter out any samples without valid labels (all -100)
        self.filtered_samples = []
        for s in self.samples:
            if sum(s['labels']) != chunk_size * -100:
                self.filtered_samples.append(s)
        if len(self.filtered_samples) < len(self.samples):
            print(f'OG dataset: {len(self.samples)} samples -> Filtered dataset: {len(self.filtered_samples)}')
            print(f'-> Filtered out {len(self.samples) - len(self.filtered_samples)} samples')
                
    def __getitem__(self, idx):
        return self.filtered_samples[idx]
    
    def __len__(self):
        return len(self.filtered_samples)