Spaces:
Running
on
Zero
Running
on
Zero
import transformers | |
import gradio as gr | |
import torch | |
import numpy as np | |
from typing import Dict, List | |
import spaces | |
# Constants | |
MODEL_NAME = 'sarvamai/shuka_v1' | |
SAMPLE_RATE = 16000 | |
MAX_NEW_TOKENS = 256 | |
# Load the pipeline | |
pipe = transformers.pipeline( | |
model=MODEL_NAME, | |
trust_remote_code=True, | |
device=0, | |
torch_dtype='bfloat16' | |
) | |
def create_conversation_turns(prompt: str) -> List[Dict[str, str]]: | |
return [ | |
{'role': 'system', 'content': 'Respond naturally and informatively.'}, | |
{'role': 'user', 'content': prompt} | |
] | |
def transcribe_and_respond(audio: np.ndarray) -> str: | |
try: | |
# Ensure audio is float32 | |
if audio.dtype != np.float32: | |
audio = audio.astype(np.float32) | |
# Create input for the pipeline | |
turns = create_conversation_turns("<|audio|>") | |
inputs = { | |
'audio': audio, | |
'turns': turns, | |
} | |
# Generate response | |
response = pipe(inputs, max_new_tokens=MAX_NEW_TOKENS) | |
return response | |
except Exception as e: | |
return f"Error processing audio: {str(e)}" | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=transcribe_and_respond, | |
inputs=gr.Audio(sources="microphone", type="numpy"), | |
outputs="text", | |
title="Live Voice Input for Transcription and Response", | |
description="Speak into your microphone, and the model will respond naturally and informatively.", | |
live=True | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |