Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,569 Bytes
2ed7223 c621812 2ed7223 c621812 4269171 c621812 2ed7223 c621812 ab07d9e c621812 ab07d9e c621812 ab07d9e c621812 4269171 ab07d9e 2ed7223 c621812 2ed7223 70351e3 c621812 2ed7223 c621812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import transformers
import gradio as gr
import torch
import numpy as np
from typing import Dict, List
import spaces
# Constants
MODEL_NAME = 'sarvamai/shuka_v1'
SAMPLE_RATE = 16000
MAX_NEW_TOKENS = 256
# Load the pipeline
pipe = transformers.pipeline(
model=MODEL_NAME,
trust_remote_code=True,
device=0,
torch_dtype='bfloat16'
)
def create_conversation_turns(prompt: str) -> List[Dict[str, str]]:
return [
{'role': 'system', 'content': 'Respond naturally and informatively.'},
{'role': 'user', 'content': prompt}
]
@spaces.GPU(duration=120)
def transcribe_and_respond(audio: np.ndarray) -> str:
try:
# Ensure audio is float32
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
# Create input for the pipeline
turns = create_conversation_turns("<|audio|>")
inputs = {
'audio': audio,
'turns': turns,
}
# Generate response
response = pipe(inputs, max_new_tokens=MAX_NEW_TOKENS)
return response
except Exception as e:
return f"Error processing audio: {str(e)}"
# Create the Gradio interface
iface = gr.Interface(
fn=transcribe_and_respond,
inputs=gr.Audio(sources="microphone", type="numpy"),
outputs="text",
title="Live Voice Input for Transcription and Response",
description="Speak into your microphone, and the model will respond naturally and informatively.",
live=True
)
# Launch the app
if __name__ == "__main__":
iface.launch() |