File size: 1,569 Bytes
2ed7223
 
c621812
 
 
2ed7223
 
c621812
 
 
 
 
4269171
 
 
 
 
 
 
c621812
 
 
 
 
 
2ed7223
 
c621812
ab07d9e
c621812
 
 
ab07d9e
c621812
 
 
 
 
 
ab07d9e
c621812
4269171
ab07d9e
 
 
 
2ed7223
c621812
2ed7223
 
70351e3
c621812
 
 
 
2ed7223
 
c621812
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import transformers
import gradio as gr
import torch
import numpy as np
from typing import Dict, List
import spaces

# Constants
MODEL_NAME = 'sarvamai/shuka_v1'
SAMPLE_RATE = 16000
MAX_NEW_TOKENS = 256

# Load the pipeline
pipe = transformers.pipeline(
    model=MODEL_NAME,
    trust_remote_code=True,
    device=0,
    torch_dtype='bfloat16'
)

def create_conversation_turns(prompt: str) -> List[Dict[str, str]]:
    return [
        {'role': 'system', 'content': 'Respond naturally and informatively.'},
        {'role': 'user', 'content': prompt}
    ]

@spaces.GPU(duration=120)
def transcribe_and_respond(audio: np.ndarray) -> str:
    try:
        # Ensure audio is float32
        if audio.dtype != np.float32:
            audio = audio.astype(np.float32)
        
        # Create input for the pipeline
        turns = create_conversation_turns("<|audio|>")
        inputs = {
            'audio': audio,
            'turns': turns,
        }
        
        # Generate response
        response = pipe(inputs, max_new_tokens=MAX_NEW_TOKENS)
        
        return response
    except Exception as e:
        return f"Error processing audio: {str(e)}"

# Create the Gradio interface
iface = gr.Interface(
    fn=transcribe_and_respond,
    inputs=gr.Audio(sources="microphone", type="numpy"),
    outputs="text",
    title="Live Voice Input for Transcription and Response",
    description="Speak into your microphone, and the model will respond naturally and informatively.",
    live=True
)

# Launch the app
if __name__ == "__main__":
    iface.launch()