arad1367's picture
Update app.py
122b92f verified
raw
history blame
4.6 kB
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess
def install_poppler():
try:
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except FileNotFoundError:
print("Poppler not found. Installing...")
subprocess.run("apt-get update", shell=True)
subprocess.run("apt-get install -y poppler-utils", shell=True)
install_poppler()
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
images = convert_from_path(pdf_file.name)
num_images = len(images)
RAG.index(
input_path=pdf_file.name,
index_name="image_index",
store_collection_with_index=False,
overwrite=True
)
results = RAG.search(user_query, k=1)
if not results:
return "No results found.", num_images
image_index = results[0]["page_num"] - 1
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": images[image_index],
},
{"type": "text", "text": user_query},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=50)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0], num_images
footer = """
<div style="text-align: center; margin-top: 20px;">
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
<a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
<a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
<a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
<br>
Made with πŸ’– by Pejman Ebrahimi
</div>
"""
pdf_input = gr.File(label="Upload PDF")
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
output_text = gr.Textbox(label="Model Answer")
output_images = gr.Textbox(label="Number of Images in PDF")
duplicate_button = gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button", color="green")
explanation_text = """
<div style='text-align: center; font-size: 16px;'>
<h2 style='font-weight: bold;'>Multimodal RAG Overview</h2>
<p>This application utilizes a Multimodal RAG (Retrieve-and-Generate) approach, enabling users to query information from PDF documents
by extracting relevant text and images. The ColPali model serves as a multimodal retriever, while the Byaldi library simplifies
the integration of ColPali. The Qwen/Qwen2-VL-2B-Instruct LLM enhances the generation of responses based on the retrieved content.</p>
</div>
"""
demo = gr.Interface(
fn=process_pdf_and_query,
inputs=[pdf_input, query_input],
outputs=[output_text, output_images],
title="<div style='text-align: center; font-size: 24px; font-weight: bold;'>Multimodal RAG with Image Query</div>",
description=explanation_text,
theme='freddyaboulton/dracula_revamped'
)
demo.launch(debug=True)
demo.append(duplicate_button)
demo.append(gr.HTML(footer))