Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,23 +9,17 @@ import torch
|
|
9 |
import torchvision
|
10 |
import subprocess
|
11 |
|
12 |
-
# Run the commands from setup.sh to install poppler-utils
|
13 |
def install_poppler():
|
14 |
try:
|
15 |
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
16 |
except FileNotFoundError:
|
17 |
print("Poppler not found. Installing...")
|
18 |
-
# Run the setup commands
|
19 |
subprocess.run("apt-get update", shell=True)
|
20 |
subprocess.run("apt-get install -y poppler-utils", shell=True)
|
21 |
|
22 |
-
# Call the Poppler installation check
|
23 |
install_poppler()
|
24 |
-
|
25 |
-
# Install flash-attn if not already installed
|
26 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
27 |
|
28 |
-
# Load the RAG Model and the Qwen2-VL-2B-Instruct model
|
29 |
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
30 |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
|
31 |
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
|
@@ -33,24 +27,17 @@ processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_rem
|
|
33 |
|
34 |
@spaces.GPU()
|
35 |
def process_pdf_and_query(pdf_file, user_query):
|
36 |
-
# Convert the PDF to images
|
37 |
images = convert_from_path(pdf_file.name)
|
38 |
num_images = len(images)
|
39 |
-
|
40 |
-
# Indexing the PDF in RAG
|
41 |
RAG.index(
|
42 |
input_path=pdf_file.name,
|
43 |
-
index_name="image_index",
|
44 |
store_collection_with_index=False,
|
45 |
overwrite=True
|
46 |
)
|
47 |
-
|
48 |
-
# Search the query in the RAG model
|
49 |
results = RAG.search(user_query, k=1)
|
50 |
if not results:
|
51 |
return "No results found.", num_images
|
52 |
-
|
53 |
-
# Retrieve the page number and process image
|
54 |
image_index = results[0]["page_num"] - 1
|
55 |
messages = [
|
56 |
{
|
@@ -64,8 +51,6 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
64 |
],
|
65 |
}
|
66 |
]
|
67 |
-
|
68 |
-
# Generate text with the Qwen model
|
69 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
70 |
image_inputs, video_inputs = process_vision_info(messages)
|
71 |
inputs = processor(
|
@@ -76,8 +61,6 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
76 |
return_tensors="pt",
|
77 |
)
|
78 |
inputs = inputs.to("cuda")
|
79 |
-
|
80 |
-
# Generate the output response
|
81 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
82 |
generated_ids_trimmed = [
|
83 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
@@ -85,29 +68,8 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
85 |
output_text = processor.batch_decode(
|
86 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
87 |
)
|
88 |
-
|
89 |
return output_text[0], num_images
|
90 |
|
91 |
-
|
92 |
-
pdf_input = gr.File(label="Upload PDF")
|
93 |
-
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
|
94 |
-
output_text = gr.Textbox(label="Model Answer")
|
95 |
-
output_images = gr.Textbox(label="Number of Images in PDF")
|
96 |
-
|
97 |
-
|
98 |
-
explanation = """
|
99 |
-
<div style="text-align: center; margin-bottom: 20px;">
|
100 |
-
<h2 style="font-weight: bold; font-size: 24px;">Multimodal RAG (Retrieval-Augmented Generation)</h2>
|
101 |
-
<p>
|
102 |
-
This application utilizes the ColPali model as a multimodal retriever,
|
103 |
-
which retrieves relevant information from documents and generates answers
|
104 |
-
using the Qwen/Qwen2-VL-2B-Instruct LLM (Large Language Model)
|
105 |
-
via the Byaldi library, developed by Answer.ai.
|
106 |
-
</p>
|
107 |
-
</div>
|
108 |
-
"""
|
109 |
-
|
110 |
-
|
111 |
footer = """
|
112 |
<div style="text-align: center; margin-top: 20px;">
|
113 |
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
@@ -121,49 +83,30 @@ footer = """
|
|
121 |
</div>
|
122 |
"""
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
demo = gr.Interface(
|
126 |
fn=process_pdf_and_query,
|
127 |
-
inputs=[pdf_input, query_input],
|
128 |
-
outputs=[output_text, output_images],
|
129 |
-
title="<div style='text-align: center; font-
|
130 |
-
|
|
|
131 |
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
gr.HTML(footer)
|
137 |
-
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
138 |
-
|
139 |
-
submit_btn = gr.Button("Submit", elem_classes="submit-button")
|
140 |
-
|
141 |
-
|
142 |
-
css = """
|
143 |
-
<style>
|
144 |
-
.submit-button {
|
145 |
-
background-color: green;
|
146 |
-
color: white;
|
147 |
-
border: none;
|
148 |
-
border-radius: 5px;
|
149 |
-
padding: 10px 20px;
|
150 |
-
font-size: 16px;
|
151 |
-
cursor: pointer;
|
152 |
-
margin: 10px; /* Add some space between buttons */
|
153 |
-
}
|
154 |
-
.duplicate-button {
|
155 |
-
background-color: green;
|
156 |
-
color: white;
|
157 |
-
border: none;
|
158 |
-
border-radius: 5px;
|
159 |
-
padding: 10px 20px;
|
160 |
-
font-size: 16px;
|
161 |
-
cursor: pointer;
|
162 |
-
margin: 10px; /* Add some space between buttons */
|
163 |
-
}
|
164 |
-
</style>
|
165 |
-
"""
|
166 |
-
gr.HTML(css)
|
167 |
-
|
168 |
-
# Launch the Gradio app
|
169 |
-
demo.launch(debug=True)
|
|
|
9 |
import torchvision
|
10 |
import subprocess
|
11 |
|
|
|
12 |
def install_poppler():
|
13 |
try:
|
14 |
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
15 |
except FileNotFoundError:
|
16 |
print("Poppler not found. Installing...")
|
|
|
17 |
subprocess.run("apt-get update", shell=True)
|
18 |
subprocess.run("apt-get install -y poppler-utils", shell=True)
|
19 |
|
|
|
20 |
install_poppler()
|
|
|
|
|
21 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
22 |
|
|
|
23 |
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
24 |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
|
25 |
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
|
|
|
27 |
|
28 |
@spaces.GPU()
|
29 |
def process_pdf_and_query(pdf_file, user_query):
|
|
|
30 |
images = convert_from_path(pdf_file.name)
|
31 |
num_images = len(images)
|
|
|
|
|
32 |
RAG.index(
|
33 |
input_path=pdf_file.name,
|
34 |
+
index_name="image_index",
|
35 |
store_collection_with_index=False,
|
36 |
overwrite=True
|
37 |
)
|
|
|
|
|
38 |
results = RAG.search(user_query, k=1)
|
39 |
if not results:
|
40 |
return "No results found.", num_images
|
|
|
|
|
41 |
image_index = results[0]["page_num"] - 1
|
42 |
messages = [
|
43 |
{
|
|
|
51 |
],
|
52 |
}
|
53 |
]
|
|
|
|
|
54 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
55 |
image_inputs, video_inputs = process_vision_info(messages)
|
56 |
inputs = processor(
|
|
|
61 |
return_tensors="pt",
|
62 |
)
|
63 |
inputs = inputs.to("cuda")
|
|
|
|
|
64 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
65 |
generated_ids_trimmed = [
|
66 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
|
68 |
output_text = processor.batch_decode(
|
69 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
70 |
)
|
|
|
71 |
return output_text[0], num_images
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
footer = """
|
74 |
<div style="text-align: center; margin-top: 20px;">
|
75 |
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
|
|
83 |
</div>
|
84 |
"""
|
85 |
|
86 |
+
pdf_input = gr.File(label="Upload PDF")
|
87 |
+
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
|
88 |
+
output_text = gr.Textbox(label="Model Answer")
|
89 |
+
output_images = gr.Textbox(label="Number of Images in PDF")
|
90 |
+
duplicate_button = gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button", color="green")
|
91 |
+
|
92 |
+
explanation_text = """
|
93 |
+
<div style='text-align: center; font-size: 16px;'>
|
94 |
+
<h2 style='font-weight: bold;'>Multimodal RAG Overview</h2>
|
95 |
+
<p>This application utilizes a Multimodal RAG (Retrieve-and-Generate) approach, enabling users to query information from PDF documents
|
96 |
+
by extracting relevant text and images. The ColPali model serves as a multimodal retriever, while the Byaldi library simplifies
|
97 |
+
the integration of ColPali. The Qwen/Qwen2-VL-2B-Instruct LLM enhances the generation of responses based on the retrieved content.</p>
|
98 |
+
</div>
|
99 |
+
"""
|
100 |
|
101 |
demo = gr.Interface(
|
102 |
fn=process_pdf_and_query,
|
103 |
+
inputs=[pdf_input, query_input],
|
104 |
+
outputs=[output_text, output_images],
|
105 |
+
title="<div style='text-align: center; font-size: 24px; font-weight: bold;'>Multimodal RAG with Image Query</div>",
|
106 |
+
description=explanation_text,
|
107 |
+
theme='freddyaboulton/dracula_revamped'
|
108 |
)
|
109 |
|
110 |
+
demo.launch(debug=True)
|
111 |
+
demo.append(duplicate_button)
|
112 |
+
demo.append(gr.HTML(footer))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|