File size: 5,072 Bytes
7e738ef
78a7c54
f9c5a74
 
 
 
 
 
f42f33d
 
78a7c54
ec95781
78a7c54
 
 
 
 
ec95781
78a7c54
 
 
ec95781
78a7c54
ec95781
 
f9c5a74
 
ec95781
f9c5a74
 
 
 
 
f42f33d
f9c5a74
ec95781
 
f9c5a74
ec95781
 
f9c5a74
 
ec95781
f9c5a74
 
 
ec95781
 
f9c5a74
 
 
ec95781
 
f9c5a74
 
 
 
 
 
 
 
 
 
 
 
 
ec95781
 
f9c5a74
 
 
 
 
 
 
 
 
 
ec95781
 
f9c5a74
 
 
 
 
 
 
ec95781
f9c5a74
 
ec95781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess

# Run the commands from setup.sh to install poppler-utils
def install_poppler():
    try:
        subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    except FileNotFoundError:
        print("Poppler not found. Installing...")
        # Run the setup commands
        subprocess.run("apt-get update", shell=True)
        subprocess.run("apt-get install -y poppler-utils", shell=True)

# Call the Poppler installation check
install_poppler()

# Install flash-attn if not already installed
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Load the RAG Model and the Qwen2-VL-2B-Instruct model
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
                                                        trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)

@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
    # Convert the PDF to images
    images = convert_from_path(pdf_file.name)  # pdf_file.name gives the file path
    num_images = len(images)

    # Indexing the PDF in RAG
    RAG.index(
        input_path=pdf_file.name,
        index_name="image_index",  # index will be saved at index_root/index_name/
        store_collection_with_index=False,
        overwrite=True
    )

    # Search the query in the RAG model
    results = RAG.search(user_query, k=1)
    if not results:
        return "No results found.", num_images

    # Retrieve the page number and process image
    image_index = results[0]["page_num"] - 1
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": images[image_index],
                },
                {"type": "text", "text": user_query},
            ],
        }
    ]

    # Generate text with the Qwen model
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    # Generate the output response
    generated_ids = model.generate(**inputs, max_new_tokens=50)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

    return output_text[0], num_images


with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
    gr.HTML("<h1 style='text-align: center; font-size: 30px;'><a href='https://github.com/arad1367'>Multimodal RAG with Image Query - By Pejman Ebrahimi</a></h1>")
    gr.Markdown("Multimodal RAG is a technique that combines both textual and visual data to provide more accurate and comprehensive results. In this application, we use ColPali, a multimodal retriever, and Byaldi, a new library by answer.ai to easily use ColPali. We also use Qwen/Qwen2-VL-2B-Instruct LLM.")

    pdf_input = gr.File(label="Upload PDF")  
    query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")  
    output_text = gr.Textbox(label="Model Answer")  
    output_images = gr.Textbox(label="Number of Images in PDF")  

    submit_btn = gr.Button("Submit", variant="primary")
    submit_btn.style(full_width=True)

    duplicate_btn = gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    duplicate_btn.style(full_width=True)

    submit_btn.click(fn=process_pdf_and_query, inputs=[pdf_input, query_input], outputs=[output_text, output_images])

    footer = """
    <div style="text-align: center; margin-top: 20px;">
        <a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
        <a href="https://github.com/arad1367" target="_blank">GitHub</a> |
        <a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
        <a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
        <a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
        <a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
        <br>
        Made with πŸ’– by Pejman Ebrahimi
    </div>
    """
    gr.HTML(footer)

demo.launch(debug=True)