Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,072 Bytes
7e738ef 78a7c54 f9c5a74 f42f33d 78a7c54 ec95781 78a7c54 ec95781 78a7c54 ec95781 78a7c54 ec95781 f9c5a74 ec95781 f9c5a74 f42f33d f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 ec95781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess
# Run the commands from setup.sh to install poppler-utils
def install_poppler():
try:
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except FileNotFoundError:
print("Poppler not found. Installing...")
# Run the setup commands
subprocess.run("apt-get update", shell=True)
subprocess.run("apt-get install -y poppler-utils", shell=True)
# Call the Poppler installation check
install_poppler()
# Install flash-attn if not already installed
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load the RAG Model and the Qwen2-VL-2B-Instruct model
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
# Convert the PDF to images
images = convert_from_path(pdf_file.name) # pdf_file.name gives the file path
num_images = len(images)
# Indexing the PDF in RAG
RAG.index(
input_path=pdf_file.name,
index_name="image_index", # index will be saved at index_root/index_name/
store_collection_with_index=False,
overwrite=True
)
# Search the query in the RAG model
results = RAG.search(user_query, k=1)
if not results:
return "No results found.", num_images
# Retrieve the page number and process image
image_index = results[0]["page_num"] - 1
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": images[image_index],
},
{"type": "text", "text": user_query},
],
}
]
# Generate text with the Qwen model
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate the output response
generated_ids = model.generate(**inputs, max_new_tokens=50)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0], num_images
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
gr.HTML("<h1 style='text-align: center; font-size: 30px;'><a href='https://github.com/arad1367'>Multimodal RAG with Image Query - By Pejman Ebrahimi</a></h1>")
gr.Markdown("Multimodal RAG is a technique that combines both textual and visual data to provide more accurate and comprehensive results. In this application, we use ColPali, a multimodal retriever, and Byaldi, a new library by answer.ai to easily use ColPali. We also use Qwen/Qwen2-VL-2B-Instruct LLM.")
pdf_input = gr.File(label="Upload PDF")
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
output_text = gr.Textbox(label="Model Answer")
output_images = gr.Textbox(label="Number of Images in PDF")
submit_btn = gr.Button("Submit", variant="primary")
submit_btn.style(full_width=True)
duplicate_btn = gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
duplicate_btn.style(full_width=True)
submit_btn.click(fn=process_pdf_and_query, inputs=[pdf_input, query_input], outputs=[output_text, output_images])
footer = """
<div style="text-align: center; margin-top: 20px;">
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
<a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
<a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
<a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
<br>
Made with π by Pejman Ebrahimi
</div>
"""
gr.HTML(footer)
demo.launch(debug=True)
|