|
"""Implements evaluation of agents on HumanEvalFix from the HumanEvalPack benchmark introduced in
|
|
"OctoPack: Instruction Tuning Code Large Language Models" (https://arxiv.org/abs/2308.07124).
|
|
Please see https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/humanevalpack.py
|
|
for the reference implementation used in the paper.
|
|
|
|
TODOs:
|
|
- Potentially support other HumanEvalPack datasets (Explain & Synthesize)
|
|
- Support other languages (currently only Python)
|
|
"""
|
|
|
|
import asyncio
|
|
import os
|
|
import tempfile
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
from evaluate import load
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import CmdRunAction, MessageAction
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
IMPORT_HELPER = {
|
|
'python': [
|
|
'import math',
|
|
'import re',
|
|
'import sys',
|
|
'import copy',
|
|
'import datetime',
|
|
'import itertools',
|
|
'import collections',
|
|
'import heapq',
|
|
'import statistics',
|
|
'import functools',
|
|
'import hashlib',
|
|
'import numpy',
|
|
'import numpy as np',
|
|
'import string',
|
|
'from typing import *',
|
|
'from collections import *',
|
|
],
|
|
}
|
|
|
|
LANGUAGE_TO_TIMEOUT = {
|
|
'python': 10,
|
|
}
|
|
|
|
LANGUAGE_TO_NUM_WORKERS = {
|
|
'python': 4,
|
|
}
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.12-bookworm',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def _get_instance_id(instance: pd.Series) -> str:
|
|
return instance.instance_id.replace('/', '__')
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
problem_statement = (
|
|
instance.declaration + instance.buggy_solution + '\n' + instance.test
|
|
)
|
|
filename = f'{_get_instance_id(instance)}.py'
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
host_script_path = os.path.join(tmpdir, filename)
|
|
with open(host_script_path, 'w') as f:
|
|
f.write(problem_statement)
|
|
runtime.copy_to(
|
|
host_script_path,
|
|
'/workspace',
|
|
)
|
|
|
|
|
|
action = CmdRunAction(command=f'ls /workspace/{_get_instance_id(instance)}.py')
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
def complete_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
language = 'python'
|
|
timeout = 10
|
|
|
|
test_result = {'result': {}, 'metadata': {}}
|
|
code_metric = load('Muennighoff/code_eval_octopack')
|
|
timeout = LANGUAGE_TO_TIMEOUT[language]
|
|
num_workers = LANGUAGE_TO_NUM_WORKERS[language]
|
|
python_imports = '\n'.join(IMPORT_HELPER[language])
|
|
|
|
action = CmdRunAction(command=f'cat /workspace/{_get_instance_id(instance)}.py')
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
function = obs.content.replace('\r\n', '\n')
|
|
logger.info(f'Function: {function}')
|
|
function = [[python_imports + '\n' + function]]
|
|
|
|
results, logs = code_metric.compute(
|
|
references=[instance.test],
|
|
predictions=function,
|
|
language=language,
|
|
timeout=timeout,
|
|
num_workers=num_workers,
|
|
)
|
|
test_result['result'] = results
|
|
test_result['metadata'] = {
|
|
'logs': logs,
|
|
'timeout': timeout,
|
|
'num_workers': num_workers,
|
|
}
|
|
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
|
|
return test_result
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
|
|
sid = _get_instance_id(instance)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
|
|
|
|
|
|
|
|
problem_statement = (
|
|
instance.declaration + instance.buggy_solution + '\n' + instance.test
|
|
)
|
|
|
|
|
|
instruction = (
|
|
f'Please fix the function in {sid}.py such that all test cases pass.\n'
|
|
'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n'
|
|
'# Problem Statement\n'
|
|
f'{problem_statement}\n\n'
|
|
)
|
|
instruction += (
|
|
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
|
|
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
|
|
)
|
|
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
initialize_runtime(runtime, instance)
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
)
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
test_result = complete_runtime(runtime, instance)
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance.instance_id,
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result,
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
|
|
|
|
|
|
dataset = load_dataset(
|
|
'bigcode/humanevalpack', 'python'
|
|
)
|
|
hefix_tests = dataset['test'].to_pandas()
|
|
hefix_tests.rename(columns={'task_id': 'instance_id'}, inplace=True)
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'humanevalfix-python',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(hefix_tests, output_file, args.eval_n_limit)
|
|
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
|