File size: 10,753 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
"""Implements evaluation of agents on HumanEvalFix from the HumanEvalPack benchmark introduced in

"OctoPack: Instruction Tuning Code Large Language Models" (https://arxiv.org/abs/2308.07124).

Please see https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/humanevalpack.py

for the reference implementation used in the paper.



TODOs:

- Potentially support other HumanEvalPack datasets (Explain & Synthesize)

- Support other languages (currently only Python)

"""

import asyncio
import os
import tempfile
from typing import Any

import pandas as pd
from datasets import load_dataset
from evaluate import load

from evaluation.utils.shared import (
    EvalMetadata,
    EvalOutput,
    codeact_user_response,
    compatibility_for_eval_history_pairs,
    make_metadata,
    prepare_dataset,
    reset_logger_for_multiprocessing,
    run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
    AppConfig,
    SandboxConfig,
    get_llm_config_arg,
    parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync

IMPORT_HELPER = {
    'python': [
        'import math',
        'import re',
        'import sys',
        'import copy',
        'import datetime',
        'import itertools',
        'import collections',
        'import heapq',
        'import statistics',
        'import functools',
        'import hashlib',
        'import numpy',
        'import numpy as np',
        'import string',
        'from typing import *',
        'from collections import *',
    ],
}

LANGUAGE_TO_TIMEOUT = {
    'python': 10,
}

LANGUAGE_TO_NUM_WORKERS = {
    'python': 4,
}

AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
    'CodeActAgent': codeact_user_response,
}

AGENT_CLS_TO_INST_SUFFIX = {
    'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n'
}


def get_config(

    metadata: EvalMetadata,

) -> AppConfig:
    config = AppConfig(
        default_agent=metadata.agent_class,
        run_as_openhands=False,
        runtime='docker',
        max_iterations=metadata.max_iterations,
        sandbox=SandboxConfig(
            base_container_image='python:3.12-bookworm',
            enable_auto_lint=True,
            use_host_network=False,
        ),
        # do not mount workspace
        workspace_base=None,
        workspace_mount_path=None,
    )
    config.set_llm_config(metadata.llm_config)
    agent_config = config.get_agent_config(metadata.agent_class)
    agent_config.enable_prompt_extensions = False
    return config


def _get_instance_id(instance: pd.Series) -> str:
    return instance.instance_id.replace('/', '__')


def initialize_runtime(

    runtime: Runtime,

    instance: pd.Series,  # this argument is not required

):
    """Initialize the runtime for the agent.



    This function is called before the runtime is used to run the agent.

    """
    logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
    obs: CmdOutputObservation

    action = CmdRunAction(command='mkdir -p /workspace')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    action = CmdRunAction(command='cd /workspace')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    problem_statement = (
        instance.declaration + instance.buggy_solution + '\n' + instance.test
    )
    filename = f'{_get_instance_id(instance)}.py'
    with tempfile.TemporaryDirectory() as tmpdir:
        host_script_path = os.path.join(tmpdir, filename)
        with open(host_script_path, 'w') as f:
            f.write(problem_statement)
        runtime.copy_to(
            host_script_path,
            '/workspace',
        )

    # check file exists
    action = CmdRunAction(command=f'ls /workspace/{_get_instance_id(instance)}.py')
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")


def complete_runtime(

    runtime: Runtime,

    instance: pd.Series,  # this argument is not required, but it is used to get the workspace_dir_name

) -> dict[str, Any]:
    """Complete the runtime for the agent.



    This function is called before the runtime is used to run the agent.

    If you need to do something in the sandbox to get the correctness metric after

    the agent has run, modify this function.

    """
    logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
    obs: CmdOutputObservation

    # default value
    language = 'python'
    timeout = 10

    test_result = {'result': {}, 'metadata': {}}
    code_metric = load('Muennighoff/code_eval_octopack')
    timeout = LANGUAGE_TO_TIMEOUT[language]
    num_workers = LANGUAGE_TO_NUM_WORKERS[language]
    python_imports = '\n'.join(IMPORT_HELPER[language])

    action = CmdRunAction(command=f'cat /workspace/{_get_instance_id(instance)}.py')
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    function = obs.content.replace('\r\n', '\n')
    logger.info(f'Function: {function}')
    function = [[python_imports + '\n' + function]]

    results, logs = code_metric.compute(
        references=[instance.test],
        predictions=function,
        language=language,
        timeout=timeout,
        num_workers=num_workers,
    )
    test_result['result'] = results
    test_result['metadata'] = {
        'logs': logs,
        'timeout': timeout,
        'num_workers': num_workers,
    }
    logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
    return test_result


def process_instance(

    instance: pd.Series,

    metadata: EvalMetadata,

    reset_logger: bool = True,

) -> EvalOutput:
    config = get_config(metadata)
    # use a session id for concurrent evaluation
    sid = _get_instance_id(instance)

    # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
    if reset_logger:
        log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
        reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
    else:
        logger.info(f'Starting evaluation for instance {instance.instance_id}.')

    # Create file with HumanEvalFix problem
    # Prompt reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L509
    problem_statement = (
        instance.declaration + instance.buggy_solution + '\n' + instance.test
    )

    # Prepare instruction
    instruction = (
        f'Please fix the function in {sid}.py such that all test cases pass.\n'
        'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n'
        '# Problem Statement\n'
        f'{problem_statement}\n\n'
    )
    instruction += (
        'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
        'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
        'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
    )
    # NOTE: You can actually set slightly different instruction for different agents
    instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]

    # Here's how you can run the agent (similar to the `main` function) and get the final task state
    runtime = create_runtime(config)
    call_async_from_sync(runtime.connect)
    initialize_runtime(runtime, instance)
    state: State | None = asyncio.run(
        run_controller(
            config=config,
            initial_user_action=MessageAction(content=instruction),
            runtime=runtime,
            fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
                metadata.agent_class
            ),
        )
    )

    if state is None:
        raise ValueError('State should not be None.')
    metrics = state.metrics.get() if state.metrics else None
    test_result = complete_runtime(runtime, instance)

    # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
    # for compatibility with the existing output format, we can remake the pairs here
    # remove when it becomes unnecessary
    histories = compatibility_for_eval_history_pairs(state.history)

    # Save the output
    output = EvalOutput(
        instance_id=instance.instance_id,
        instruction=instruction,
        metadata=metadata,
        history=histories,
        metrics=metrics,
        error=state.last_error if state and state.last_error else None,
        test_result=test_result,
    )
    return output


if __name__ == '__main__':
    args = parse_arguments()

    # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
    # so we don't need to manage file uploading to OpenHands's repo
    dataset = load_dataset(
        'bigcode/humanevalpack', 'python'
    )  # TODO: Support other languages
    hefix_tests = dataset['test'].to_pandas()
    hefix_tests.rename(columns={'task_id': 'instance_id'}, inplace=True)

    llm_config = None
    if args.llm_config:
        llm_config = get_llm_config_arg(args.llm_config)
        # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
        llm_config.modify_params = False
    if llm_config is None:
        raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')

    metadata = make_metadata(
        llm_config,
        'humanevalfix-python',
        args.agent_cls,
        args.max_iterations,
        args.eval_note,
        args.eval_output_dir,
    )
    output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
    instances = prepare_dataset(hefix_tests, output_file, args.eval_n_limit)

    run_evaluation(
        instances,
        metadata,
        output_file,
        args.eval_num_workers,
        process_instance,
    )