anonymous-upload-neurips-2025's picture
Upload 221 files
88c922f verified
""" CLIP tokenizer
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""
import gzip
import html
import os
import random
import string
from functools import lru_cache, partial
from typing import Callable, List, Optional, Union
import warnings
import ftfy
import numpy as np
import regex as re
import torch
# https://stackoverflow.com/q/62691279
os.environ["TOKENIZERS_PARALLELISM"] = "false"
_nltk_init = False
DEFAULT_CONTEXT_LENGTH = 77 # default context length for OpenAI CLIP
@lru_cache()
def default_bpe():
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = " ".join(text.split())
text = text.strip()
return text
def _clean_canonicalize(x):
# basic, remove whitespace, remove punctuation, lower case
return canonicalize_text(basic_clean(x))
def _clean_lower(x):
# basic, remove whitespace, lower case
return whitespace_clean(basic_clean(x)).lower()
def _clean_whitespace(x):
# basic, remove whitespace
return whitespace_clean(basic_clean(x))
def get_clean_fn(type: str):
if type == 'canonicalize':
return _clean_canonicalize
elif type == 'lower':
return _clean_lower
elif type == 'whitespace':
return _clean_whitespace
else:
assert False, f"Invalid clean function ({type})."
def canonicalize_text(
text,
*,
keep_punctuation_exact_string=None,
trans_punctuation: dict = str.maketrans("", "", string.punctuation),
):
"""Returns canonicalized `text` (lowercase and punctuation removed).
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
Args:
text: string to be canonicalized.
keep_punctuation_exact_string: If provided, then this exact string kept.
For example providing '{}' will keep any occurrences of '{}' (but will
still remove '{' and '}' that appear separately).
"""
text = text.replace("_", " ")
if keep_punctuation_exact_string:
text = keep_punctuation_exact_string.join(
part.translate(trans_punctuation)
for part in text.split(keep_punctuation_exact_string)
)
else:
text = text.translate(trans_punctuation)
text = text.lower()
text = " ".join(text.split())
return text.strip()
class SimpleTokenizer(object):
def __init__(
self,
bpe_path: str = default_bpe(),
additional_special_tokens: Optional[List[str]] = None,
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
clean: str = 'lower',
reduction_mask: str = ''
):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
merges = merges[1:49152-256-2+1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v+'</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
special_tokens = ['<start_of_text>', '<end_of_text>']
if additional_special_tokens:
special_tokens += additional_special_tokens
vocab.extend(special_tokens)
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {t:t for t in special_tokens}
special = "|".join(special_tokens)
self.pat = re.compile(
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
re.IGNORECASE,
)
self.vocab_size = len(self.encoder)
self.all_special_ids = [self.encoder[t] for t in special_tokens]
self.sot_token_id = self.all_special_ids[0]
self.eot_token_id = self.all_special_ids[1]
self.context_length = context_length
self.clean_fn = get_clean_fn(clean)
self.reduction_fn = get_reduction_mask_fn(reduction_mask) if reduction_mask else None
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token+'</w>'
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except Exception:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = self.clean_fn(text)
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
return text
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.LongTensor:
""" Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]
context_length = context_length or self.context_length
assert context_length, 'Please set a valid context length'
if self.reduction_fn is not None:
# use reduction strategy for tokenize if set, otherwise default to truncation below
return self.reduction_fn(
texts,
context_length=context_length,
sot_token_id=self.sot_token_id,
eot_token_id=self.eot_token_id,
encode_fn=self.encode,
)
all_tokens = [[self.sot_token_id] + self.encode(text) + [self.eot_token_id] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
tokens = tokens[:context_length] # Truncate
tokens[-1] = self.eot_token_id
result[i, :len(tokens)] = torch.tensor(tokens)
return result
_tokenizer = SimpleTokenizer()
def decode(output_ids: torch.Tensor):
output_ids = output_ids.cpu().numpy()
return _tokenizer.decode(output_ids)
def tokenize(texts: Union[str, List[str]], context_length: int = DEFAULT_CONTEXT_LENGTH) -> torch.LongTensor:
return _tokenizer(texts, context_length=context_length)
def random_mask_tokenize(
texts: Union[str, List[str]],
context_length: int,
sot_token_id: int,
eot_token_id: int,
encode_fn: Callable,
shuffle: bool = False,
):
all_tokens = [encode_fn(text) for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
tokens = torch.tensor(tokens)
num_tokens = len(tokens)
if num_tokens > context_length - 2: # 2 for sot and eot token
num_keep = context_length - 2
indices = torch.randperm(len(tokens))
indices = indices[:num_keep]
if not shuffle:
indices = indices.msort()
tokens = tokens[indices]
num_tokens = num_keep
result[i, 0] = sot_token_id
result[i, 1:num_tokens + 1] = tokens
result[i, num_tokens + 1] = eot_token_id
return result
def simple_mask_tokenize(
texts: Union[str, List[str]],
context_length: int,
sot_token_id: int,
eot_token_id: int,
encode_fn: Callable,
):
all_tokens = [encode_fn(text) for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
num_tokens = len(tokens)
if num_tokens > context_length - 2: # 2 for sot and eot token
num_keep = context_length - 2
start_index = random.randint(0, num_tokens - num_keep) # high is incl
tokens = tokens[start_index: start_index + num_keep]
tokens = [sot_token_id] + tokens + [eot_token_id]
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def syntax_mask_tokenize(
texts: Union[str, List[str]],
context_length: int,
sot_token_id: int,
eot_token_id: int,
encode_fn: Callable,
) -> torch.LongTensor:
""" Returns the tokenized representation of given input string(s).
Apply syntax masking before tokenize.
"""
import nltk
global _nltk_init
if not _nltk_init:
# run them for the first time
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
_nltk_init = True
def get_order(x):
if x.startswith('NN'):
return 1
elif x.startswith('JJ'):
return 2
elif x.startswith('VB'):
return 3
else:
return 4
# syntax masking
new_texts = []
for text in texts:
list_tokens = nltk.tokenize.word_tokenize(text)
pos_tags = nltk.pos_tag(list_tokens)
# sample the words by get_order method
order_list = [get_order(tag) for _, tag in pos_tags]
sorted_ids = np.argsort(np.array(order_list))
sampled_ids = sorted(sorted_ids[:context_length - 2]) # need 2 slots for sot and eot tokens
sampled_tokens = np.take(np.array(list_tokens), sampled_ids, axis=0) # sample the tokens
new_text = ''
for token in sampled_tokens:
new_text = new_text + str(token) + ' '
new_text = new_text.strip()
new_texts.append(new_text)
texts = new_texts
all_tokens = [[sot_token_id] + encode_fn(text) + [eot_token_id] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
# still need first truncate because some words produces two tokens
if len(tokens) > context_length:
tokens = tokens[:context_length] # Truncate
tokens[-1] = eot_token_id
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def get_reduction_mask_fn(type: str):
""" Choose strategy for dropping (masking) tokens to achieve target context length"""
assert type in ('simple', 'random', 'shuffle', 'syntax')
if type == 'simple':
return simple_mask_tokenize # randomly select block [start:end]
elif type == 'random':
return random_mask_tokenize # randomly drop tokens (keep order)
elif type == 'shuffle':
return partial(random_mask_tokenize, shuffle=True) # randomly drop tokens (shuffle order)
elif type == 'syntax':
return syntax_mask_tokenize # randomly drop prioritized by syntax
class HFTokenizer:
"""HuggingFace tokenizer wrapper"""
def __init__(
self,
tokenizer_name: str,
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
clean: str = 'whitespace',
strip_sep_token: bool = False,
language: Optional[str] = None,
**kwargs
):
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **kwargs)
set_lang_fn = getattr(self.tokenizer, 'set_src_lang_special_tokens', None)
if callable(set_lang_fn):
self.set_lang_fn = set_lang_fn
if language is not None:
self.set_language(language)
self.context_length = context_length
self.clean_fn = get_clean_fn(clean)
self.strip_sep_token = strip_sep_token
def save_pretrained(self, dest):
self.tokenizer.save_pretrained(dest)
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor:
# same cleaning as for default tokenizer, except lowercasing
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
if isinstance(texts, str):
texts = [texts]
context_length = context_length or self.context_length
assert context_length, 'Please set a valid context length in class init or call.'
texts = [self.clean_fn(text) for text in texts]
input_ids = self.tokenizer.batch_encode_plus(
texts,
return_tensors='pt',
max_length=context_length,
padding='max_length',
truncation=True,
).input_ids
if self.strip_sep_token:
input_ids = torch.where(
input_ids == self.tokenizer.sep_token_id,
torch.zeros_like(input_ids),
input_ids,
)
return input_ids
def set_language(self, src_lang):
if hasattr(self, 'set_lang_fn'):
self.set_lang_fn(src_lang)
else:
warnings.warn('Cannot set language for the tokenizer.')
class SigLipTokenizer:
"""HuggingFace tokenizer wrapper for SigLIP T5 compatible sentencepiece vocabs
"""
VOCAB_FILES = {
# english, vocab_size=32_000
"c4-en": "http://storage.googleapis.com/t5-data/vocabs/cc_en.32000/sentencepiece.model",
# used in multilingual models (mT5, PaLI), vocab_size=250_000
"mc4": "http://storage.googleapis.com/t5-data/vocabs/mc4.250000.100extra/sentencepiece.model",
}
def __init__(
self,
tokenizer_name: str,
context_length: Optional[int] = 64,
):
from transformers import T5TokenizerFast
if tokenizer_name in self.VOCAB_FILES:
# FIXME temporary hack?
import tempfile
import fsspec
vocab_file = self.VOCAB_FILES[tokenizer_name]
with tempfile.NamedTemporaryFile('wb') as dst:
with fsspec.open(vocab_file, 'rb') as src:
dst.write(src.read())
self.tokenizer = T5TokenizerFast(dst.name, legacy=False)
else:
self.tokenizer = T5TokenizerFast(tokenizer_name, legacy=False)
self.tokenizer.pad_token_id = 1
self.tokenizer.eos_token_id = 1
self.context_length = context_length
def save_pretrained(self, dest):
self.tokenizer.save_pretrained(dest)
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor:
# same cleaning as for default tokenizer, except lowercasing
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
if isinstance(texts, str):
texts = [texts]
context_length = context_length or self.context_length
assert context_length, 'Please set a valid context length in class init or call.'
texts = [canonicalize_text(basic_clean(text)) for text in texts]
output = self.tokenizer(
texts,
return_tensors='pt',
max_length=context_length,
padding='max_length',
truncation=True,
)
return output.input_ids