|
""" CLIP tokenizer |
|
|
|
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. |
|
""" |
|
import gzip |
|
import html |
|
import os |
|
import random |
|
import string |
|
from functools import lru_cache, partial |
|
from typing import Callable, List, Optional, Union |
|
import warnings |
|
|
|
import ftfy |
|
import numpy as np |
|
import regex as re |
|
import torch |
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
_nltk_init = False |
|
|
|
DEFAULT_CONTEXT_LENGTH = 77 |
|
|
|
|
|
@lru_cache() |
|
def default_bpe(): |
|
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") |
|
|
|
|
|
@lru_cache() |
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a significant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8+n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def get_pairs(word): |
|
"""Return set of symbol pairs in a word. |
|
Word is represented as tuple of symbols (symbols being variable-length strings). |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
def basic_clean(text): |
|
text = ftfy.fix_text(text) |
|
text = html.unescape(html.unescape(text)) |
|
return text.strip() |
|
|
|
|
|
def whitespace_clean(text): |
|
text = " ".join(text.split()) |
|
text = text.strip() |
|
return text |
|
|
|
|
|
def _clean_canonicalize(x): |
|
|
|
return canonicalize_text(basic_clean(x)) |
|
|
|
|
|
def _clean_lower(x): |
|
|
|
return whitespace_clean(basic_clean(x)).lower() |
|
|
|
|
|
def _clean_whitespace(x): |
|
|
|
return whitespace_clean(basic_clean(x)) |
|
|
|
|
|
def get_clean_fn(type: str): |
|
if type == 'canonicalize': |
|
return _clean_canonicalize |
|
elif type == 'lower': |
|
return _clean_lower |
|
elif type == 'whitespace': |
|
return _clean_whitespace |
|
else: |
|
assert False, f"Invalid clean function ({type})." |
|
|
|
|
|
def canonicalize_text( |
|
text, |
|
*, |
|
keep_punctuation_exact_string=None, |
|
trans_punctuation: dict = str.maketrans("", "", string.punctuation), |
|
): |
|
"""Returns canonicalized `text` (lowercase and punctuation removed). |
|
|
|
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 |
|
|
|
Args: |
|
text: string to be canonicalized. |
|
keep_punctuation_exact_string: If provided, then this exact string kept. |
|
For example providing '{}' will keep any occurrences of '{}' (but will |
|
still remove '{' and '}' that appear separately). |
|
""" |
|
text = text.replace("_", " ") |
|
if keep_punctuation_exact_string: |
|
text = keep_punctuation_exact_string.join( |
|
part.translate(trans_punctuation) |
|
for part in text.split(keep_punctuation_exact_string) |
|
) |
|
else: |
|
text = text.translate(trans_punctuation) |
|
text = text.lower() |
|
text = " ".join(text.split()) |
|
return text.strip() |
|
|
|
|
|
class SimpleTokenizer(object): |
|
def __init__( |
|
self, |
|
bpe_path: str = default_bpe(), |
|
additional_special_tokens: Optional[List[str]] = None, |
|
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH, |
|
clean: str = 'lower', |
|
reduction_mask: str = '' |
|
): |
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') |
|
merges = merges[1:49152-256-2+1] |
|
merges = [tuple(merge.split()) for merge in merges] |
|
vocab = list(bytes_to_unicode().values()) |
|
vocab = vocab + [v+'</w>' for v in vocab] |
|
for merge in merges: |
|
vocab.append(''.join(merge)) |
|
special_tokens = ['<start_of_text>', '<end_of_text>'] |
|
if additional_special_tokens: |
|
special_tokens += additional_special_tokens |
|
vocab.extend(special_tokens) |
|
self.encoder = dict(zip(vocab, range(len(vocab)))) |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
self.bpe_ranks = dict(zip(merges, range(len(merges)))) |
|
self.cache = {t:t for t in special_tokens} |
|
special = "|".join(special_tokens) |
|
self.pat = re.compile( |
|
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", |
|
re.IGNORECASE, |
|
) |
|
self.vocab_size = len(self.encoder) |
|
self.all_special_ids = [self.encoder[t] for t in special_tokens] |
|
self.sot_token_id = self.all_special_ids[0] |
|
self.eot_token_id = self.all_special_ids[1] |
|
self.context_length = context_length |
|
self.clean_fn = get_clean_fn(clean) |
|
self.reduction_fn = get_reduction_mask_fn(reduction_mask) if reduction_mask else None |
|
|
|
def bpe(self, token): |
|
if token in self.cache: |
|
return self.cache[token] |
|
word = tuple(token[:-1]) + ( token[-1] + '</w>',) |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token+'</w>' |
|
|
|
while True: |
|
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
new_word.extend(word[i:j]) |
|
i = j |
|
except Exception: |
|
new_word.extend(word[i:]) |
|
break |
|
|
|
if word[i] == first and i < len(word)-1 and word[i+1] == second: |
|
new_word.append(first+second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = ' '.join(word) |
|
self.cache[token] = word |
|
return word |
|
|
|
def encode(self, text): |
|
bpe_tokens = [] |
|
text = self.clean_fn(text) |
|
for token in re.findall(self.pat, text): |
|
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) |
|
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) |
|
return bpe_tokens |
|
|
|
def decode(self, tokens): |
|
text = ''.join([self.decoder[token] for token in tokens]) |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') |
|
return text |
|
|
|
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.LongTensor: |
|
""" Returns the tokenized representation of given input string(s) |
|
|
|
Parameters |
|
---------- |
|
texts : Union[str, List[str]] |
|
An input string or a list of input strings to tokenize |
|
context_length : int |
|
The context length to use; all CLIP models use 77 as the context length |
|
|
|
Returns |
|
------- |
|
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] |
|
""" |
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
context_length = context_length or self.context_length |
|
assert context_length, 'Please set a valid context length' |
|
|
|
if self.reduction_fn is not None: |
|
|
|
return self.reduction_fn( |
|
texts, |
|
context_length=context_length, |
|
sot_token_id=self.sot_token_id, |
|
eot_token_id=self.eot_token_id, |
|
encode_fn=self.encode, |
|
) |
|
|
|
all_tokens = [[self.sot_token_id] + self.encode(text) + [self.eot_token_id] for text in texts] |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
if len(tokens) > context_length: |
|
tokens = tokens[:context_length] |
|
tokens[-1] = self.eot_token_id |
|
result[i, :len(tokens)] = torch.tensor(tokens) |
|
|
|
return result |
|
|
|
|
|
_tokenizer = SimpleTokenizer() |
|
|
|
|
|
def decode(output_ids: torch.Tensor): |
|
output_ids = output_ids.cpu().numpy() |
|
return _tokenizer.decode(output_ids) |
|
|
|
|
|
def tokenize(texts: Union[str, List[str]], context_length: int = DEFAULT_CONTEXT_LENGTH) -> torch.LongTensor: |
|
return _tokenizer(texts, context_length=context_length) |
|
|
|
|
|
def random_mask_tokenize( |
|
texts: Union[str, List[str]], |
|
context_length: int, |
|
sot_token_id: int, |
|
eot_token_id: int, |
|
encode_fn: Callable, |
|
shuffle: bool = False, |
|
): |
|
all_tokens = [encode_fn(text) for text in texts] |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
tokens = torch.tensor(tokens) |
|
num_tokens = len(tokens) |
|
if num_tokens > context_length - 2: |
|
num_keep = context_length - 2 |
|
indices = torch.randperm(len(tokens)) |
|
indices = indices[:num_keep] |
|
if not shuffle: |
|
indices = indices.msort() |
|
tokens = tokens[indices] |
|
num_tokens = num_keep |
|
result[i, 0] = sot_token_id |
|
result[i, 1:num_tokens + 1] = tokens |
|
result[i, num_tokens + 1] = eot_token_id |
|
|
|
return result |
|
|
|
|
|
def simple_mask_tokenize( |
|
texts: Union[str, List[str]], |
|
context_length: int, |
|
sot_token_id: int, |
|
eot_token_id: int, |
|
encode_fn: Callable, |
|
): |
|
all_tokens = [encode_fn(text) for text in texts] |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
num_tokens = len(tokens) |
|
if num_tokens > context_length - 2: |
|
num_keep = context_length - 2 |
|
start_index = random.randint(0, num_tokens - num_keep) |
|
tokens = tokens[start_index: start_index + num_keep] |
|
tokens = [sot_token_id] + tokens + [eot_token_id] |
|
result[i, :len(tokens)] = torch.tensor(tokens) |
|
|
|
return result |
|
|
|
|
|
def syntax_mask_tokenize( |
|
texts: Union[str, List[str]], |
|
context_length: int, |
|
sot_token_id: int, |
|
eot_token_id: int, |
|
encode_fn: Callable, |
|
) -> torch.LongTensor: |
|
""" Returns the tokenized representation of given input string(s). |
|
Apply syntax masking before tokenize. |
|
""" |
|
import nltk |
|
global _nltk_init |
|
if not _nltk_init: |
|
|
|
nltk.download('punkt') |
|
nltk.download('averaged_perceptron_tagger') |
|
_nltk_init = True |
|
|
|
def get_order(x): |
|
if x.startswith('NN'): |
|
return 1 |
|
elif x.startswith('JJ'): |
|
return 2 |
|
elif x.startswith('VB'): |
|
return 3 |
|
else: |
|
return 4 |
|
|
|
|
|
new_texts = [] |
|
for text in texts: |
|
list_tokens = nltk.tokenize.word_tokenize(text) |
|
pos_tags = nltk.pos_tag(list_tokens) |
|
|
|
order_list = [get_order(tag) for _, tag in pos_tags] |
|
sorted_ids = np.argsort(np.array(order_list)) |
|
sampled_ids = sorted(sorted_ids[:context_length - 2]) |
|
sampled_tokens = np.take(np.array(list_tokens), sampled_ids, axis=0) |
|
|
|
new_text = '' |
|
for token in sampled_tokens: |
|
new_text = new_text + str(token) + ' ' |
|
new_text = new_text.strip() |
|
new_texts.append(new_text) |
|
texts = new_texts |
|
|
|
all_tokens = [[sot_token_id] + encode_fn(text) + [eot_token_id] for text in texts] |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
|
|
if len(tokens) > context_length: |
|
tokens = tokens[:context_length] |
|
tokens[-1] = eot_token_id |
|
result[i, :len(tokens)] = torch.tensor(tokens) |
|
|
|
return result |
|
|
|
|
|
def get_reduction_mask_fn(type: str): |
|
""" Choose strategy for dropping (masking) tokens to achieve target context length""" |
|
assert type in ('simple', 'random', 'shuffle', 'syntax') |
|
if type == 'simple': |
|
return simple_mask_tokenize |
|
elif type == 'random': |
|
return random_mask_tokenize |
|
elif type == 'shuffle': |
|
return partial(random_mask_tokenize, shuffle=True) |
|
elif type == 'syntax': |
|
return syntax_mask_tokenize |
|
|
|
|
|
class HFTokenizer: |
|
"""HuggingFace tokenizer wrapper""" |
|
|
|
def __init__( |
|
self, |
|
tokenizer_name: str, |
|
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH, |
|
clean: str = 'whitespace', |
|
strip_sep_token: bool = False, |
|
language: Optional[str] = None, |
|
**kwargs |
|
): |
|
from transformers import AutoTokenizer |
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **kwargs) |
|
set_lang_fn = getattr(self.tokenizer, 'set_src_lang_special_tokens', None) |
|
if callable(set_lang_fn): |
|
self.set_lang_fn = set_lang_fn |
|
if language is not None: |
|
self.set_language(language) |
|
self.context_length = context_length |
|
self.clean_fn = get_clean_fn(clean) |
|
self.strip_sep_token = strip_sep_token |
|
|
|
def save_pretrained(self, dest): |
|
self.tokenizer.save_pretrained(dest) |
|
|
|
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor: |
|
|
|
|
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
context_length = context_length or self.context_length |
|
assert context_length, 'Please set a valid context length in class init or call.' |
|
|
|
texts = [self.clean_fn(text) for text in texts] |
|
input_ids = self.tokenizer.batch_encode_plus( |
|
texts, |
|
return_tensors='pt', |
|
max_length=context_length, |
|
padding='max_length', |
|
truncation=True, |
|
).input_ids |
|
|
|
if self.strip_sep_token: |
|
input_ids = torch.where( |
|
input_ids == self.tokenizer.sep_token_id, |
|
torch.zeros_like(input_ids), |
|
input_ids, |
|
) |
|
|
|
return input_ids |
|
|
|
def set_language(self, src_lang): |
|
if hasattr(self, 'set_lang_fn'): |
|
self.set_lang_fn(src_lang) |
|
else: |
|
warnings.warn('Cannot set language for the tokenizer.') |
|
|
|
|
|
class SigLipTokenizer: |
|
"""HuggingFace tokenizer wrapper for SigLIP T5 compatible sentencepiece vocabs |
|
""" |
|
VOCAB_FILES = { |
|
|
|
"c4-en": "http://storage.googleapis.com/t5-data/vocabs/cc_en.32000/sentencepiece.model", |
|
|
|
"mc4": "http://storage.googleapis.com/t5-data/vocabs/mc4.250000.100extra/sentencepiece.model", |
|
} |
|
|
|
def __init__( |
|
self, |
|
tokenizer_name: str, |
|
context_length: Optional[int] = 64, |
|
): |
|
from transformers import T5TokenizerFast |
|
|
|
if tokenizer_name in self.VOCAB_FILES: |
|
|
|
import tempfile |
|
|
|
import fsspec |
|
vocab_file = self.VOCAB_FILES[tokenizer_name] |
|
with tempfile.NamedTemporaryFile('wb') as dst: |
|
with fsspec.open(vocab_file, 'rb') as src: |
|
dst.write(src.read()) |
|
self.tokenizer = T5TokenizerFast(dst.name, legacy=False) |
|
else: |
|
self.tokenizer = T5TokenizerFast(tokenizer_name, legacy=False) |
|
|
|
self.tokenizer.pad_token_id = 1 |
|
self.tokenizer.eos_token_id = 1 |
|
self.context_length = context_length |
|
|
|
def save_pretrained(self, dest): |
|
self.tokenizer.save_pretrained(dest) |
|
|
|
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor: |
|
|
|
|
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
context_length = context_length or self.context_length |
|
assert context_length, 'Please set a valid context length in class init or call.' |
|
|
|
texts = [canonicalize_text(basic_clean(text)) for text in texts] |
|
output = self.tokenizer( |
|
texts, |
|
return_tensors='pt', |
|
max_length=context_length, |
|
padding='max_length', |
|
truncation=True, |
|
) |
|
return output.input_ids |
|
|