File size: 18,175 Bytes
88c922f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
""" CLIP tokenizer
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""
import gzip
import html
import os
import random
import string
from functools import lru_cache, partial
from typing import Callable, List, Optional, Union
import warnings
import ftfy
import numpy as np
import regex as re
import torch
# https://stackoverflow.com/q/62691279
os.environ["TOKENIZERS_PARALLELISM"] = "false"
_nltk_init = False
DEFAULT_CONTEXT_LENGTH = 77 # default context length for OpenAI CLIP
@lru_cache()
def default_bpe():
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = " ".join(text.split())
text = text.strip()
return text
def _clean_canonicalize(x):
# basic, remove whitespace, remove punctuation, lower case
return canonicalize_text(basic_clean(x))
def _clean_lower(x):
# basic, remove whitespace, lower case
return whitespace_clean(basic_clean(x)).lower()
def _clean_whitespace(x):
# basic, remove whitespace
return whitespace_clean(basic_clean(x))
def get_clean_fn(type: str):
if type == 'canonicalize':
return _clean_canonicalize
elif type == 'lower':
return _clean_lower
elif type == 'whitespace':
return _clean_whitespace
else:
assert False, f"Invalid clean function ({type})."
def canonicalize_text(
text,
*,
keep_punctuation_exact_string=None,
trans_punctuation: dict = str.maketrans("", "", string.punctuation),
):
"""Returns canonicalized `text` (lowercase and punctuation removed).
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
Args:
text: string to be canonicalized.
keep_punctuation_exact_string: If provided, then this exact string kept.
For example providing '{}' will keep any occurrences of '{}' (but will
still remove '{' and '}' that appear separately).
"""
text = text.replace("_", " ")
if keep_punctuation_exact_string:
text = keep_punctuation_exact_string.join(
part.translate(trans_punctuation)
for part in text.split(keep_punctuation_exact_string)
)
else:
text = text.translate(trans_punctuation)
text = text.lower()
text = " ".join(text.split())
return text.strip()
class SimpleTokenizer(object):
def __init__(
self,
bpe_path: str = default_bpe(),
additional_special_tokens: Optional[List[str]] = None,
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
clean: str = 'lower',
reduction_mask: str = ''
):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
merges = merges[1:49152-256-2+1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v+'</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
special_tokens = ['<start_of_text>', '<end_of_text>']
if additional_special_tokens:
special_tokens += additional_special_tokens
vocab.extend(special_tokens)
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {t:t for t in special_tokens}
special = "|".join(special_tokens)
self.pat = re.compile(
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
re.IGNORECASE,
)
self.vocab_size = len(self.encoder)
self.all_special_ids = [self.encoder[t] for t in special_tokens]
self.sot_token_id = self.all_special_ids[0]
self.eot_token_id = self.all_special_ids[1]
self.context_length = context_length
self.clean_fn = get_clean_fn(clean)
self.reduction_fn = get_reduction_mask_fn(reduction_mask) if reduction_mask else None
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token+'</w>'
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except Exception:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = self.clean_fn(text)
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
return text
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.LongTensor:
""" Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]
context_length = context_length or self.context_length
assert context_length, 'Please set a valid context length'
if self.reduction_fn is not None:
# use reduction strategy for tokenize if set, otherwise default to truncation below
return self.reduction_fn(
texts,
context_length=context_length,
sot_token_id=self.sot_token_id,
eot_token_id=self.eot_token_id,
encode_fn=self.encode,
)
all_tokens = [[self.sot_token_id] + self.encode(text) + [self.eot_token_id] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
tokens = tokens[:context_length] # Truncate
tokens[-1] = self.eot_token_id
result[i, :len(tokens)] = torch.tensor(tokens)
return result
_tokenizer = SimpleTokenizer()
def decode(output_ids: torch.Tensor):
output_ids = output_ids.cpu().numpy()
return _tokenizer.decode(output_ids)
def tokenize(texts: Union[str, List[str]], context_length: int = DEFAULT_CONTEXT_LENGTH) -> torch.LongTensor:
return _tokenizer(texts, context_length=context_length)
def random_mask_tokenize(
texts: Union[str, List[str]],
context_length: int,
sot_token_id: int,
eot_token_id: int,
encode_fn: Callable,
shuffle: bool = False,
):
all_tokens = [encode_fn(text) for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
tokens = torch.tensor(tokens)
num_tokens = len(tokens)
if num_tokens > context_length - 2: # 2 for sot and eot token
num_keep = context_length - 2
indices = torch.randperm(len(tokens))
indices = indices[:num_keep]
if not shuffle:
indices = indices.msort()
tokens = tokens[indices]
num_tokens = num_keep
result[i, 0] = sot_token_id
result[i, 1:num_tokens + 1] = tokens
result[i, num_tokens + 1] = eot_token_id
return result
def simple_mask_tokenize(
texts: Union[str, List[str]],
context_length: int,
sot_token_id: int,
eot_token_id: int,
encode_fn: Callable,
):
all_tokens = [encode_fn(text) for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
num_tokens = len(tokens)
if num_tokens > context_length - 2: # 2 for sot and eot token
num_keep = context_length - 2
start_index = random.randint(0, num_tokens - num_keep) # high is incl
tokens = tokens[start_index: start_index + num_keep]
tokens = [sot_token_id] + tokens + [eot_token_id]
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def syntax_mask_tokenize(
texts: Union[str, List[str]],
context_length: int,
sot_token_id: int,
eot_token_id: int,
encode_fn: Callable,
) -> torch.LongTensor:
""" Returns the tokenized representation of given input string(s).
Apply syntax masking before tokenize.
"""
import nltk
global _nltk_init
if not _nltk_init:
# run them for the first time
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
_nltk_init = True
def get_order(x):
if x.startswith('NN'):
return 1
elif x.startswith('JJ'):
return 2
elif x.startswith('VB'):
return 3
else:
return 4
# syntax masking
new_texts = []
for text in texts:
list_tokens = nltk.tokenize.word_tokenize(text)
pos_tags = nltk.pos_tag(list_tokens)
# sample the words by get_order method
order_list = [get_order(tag) for _, tag in pos_tags]
sorted_ids = np.argsort(np.array(order_list))
sampled_ids = sorted(sorted_ids[:context_length - 2]) # need 2 slots for sot and eot tokens
sampled_tokens = np.take(np.array(list_tokens), sampled_ids, axis=0) # sample the tokens
new_text = ''
for token in sampled_tokens:
new_text = new_text + str(token) + ' '
new_text = new_text.strip()
new_texts.append(new_text)
texts = new_texts
all_tokens = [[sot_token_id] + encode_fn(text) + [eot_token_id] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
# still need first truncate because some words produces two tokens
if len(tokens) > context_length:
tokens = tokens[:context_length] # Truncate
tokens[-1] = eot_token_id
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def get_reduction_mask_fn(type: str):
""" Choose strategy for dropping (masking) tokens to achieve target context length"""
assert type in ('simple', 'random', 'shuffle', 'syntax')
if type == 'simple':
return simple_mask_tokenize # randomly select block [start:end]
elif type == 'random':
return random_mask_tokenize # randomly drop tokens (keep order)
elif type == 'shuffle':
return partial(random_mask_tokenize, shuffle=True) # randomly drop tokens (shuffle order)
elif type == 'syntax':
return syntax_mask_tokenize # randomly drop prioritized by syntax
class HFTokenizer:
"""HuggingFace tokenizer wrapper"""
def __init__(
self,
tokenizer_name: str,
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
clean: str = 'whitespace',
strip_sep_token: bool = False,
language: Optional[str] = None,
**kwargs
):
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **kwargs)
set_lang_fn = getattr(self.tokenizer, 'set_src_lang_special_tokens', None)
if callable(set_lang_fn):
self.set_lang_fn = set_lang_fn
if language is not None:
self.set_language(language)
self.context_length = context_length
self.clean_fn = get_clean_fn(clean)
self.strip_sep_token = strip_sep_token
def save_pretrained(self, dest):
self.tokenizer.save_pretrained(dest)
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor:
# same cleaning as for default tokenizer, except lowercasing
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
if isinstance(texts, str):
texts = [texts]
context_length = context_length or self.context_length
assert context_length, 'Please set a valid context length in class init or call.'
texts = [self.clean_fn(text) for text in texts]
input_ids = self.tokenizer.batch_encode_plus(
texts,
return_tensors='pt',
max_length=context_length,
padding='max_length',
truncation=True,
).input_ids
if self.strip_sep_token:
input_ids = torch.where(
input_ids == self.tokenizer.sep_token_id,
torch.zeros_like(input_ids),
input_ids,
)
return input_ids
def set_language(self, src_lang):
if hasattr(self, 'set_lang_fn'):
self.set_lang_fn(src_lang)
else:
warnings.warn('Cannot set language for the tokenizer.')
class SigLipTokenizer:
"""HuggingFace tokenizer wrapper for SigLIP T5 compatible sentencepiece vocabs
"""
VOCAB_FILES = {
# english, vocab_size=32_000
"c4-en": "http://storage.googleapis.com/t5-data/vocabs/cc_en.32000/sentencepiece.model",
# used in multilingual models (mT5, PaLI), vocab_size=250_000
"mc4": "http://storage.googleapis.com/t5-data/vocabs/mc4.250000.100extra/sentencepiece.model",
}
def __init__(
self,
tokenizer_name: str,
context_length: Optional[int] = 64,
):
from transformers import T5TokenizerFast
if tokenizer_name in self.VOCAB_FILES:
# FIXME temporary hack?
import tempfile
import fsspec
vocab_file = self.VOCAB_FILES[tokenizer_name]
with tempfile.NamedTemporaryFile('wb') as dst:
with fsspec.open(vocab_file, 'rb') as src:
dst.write(src.read())
self.tokenizer = T5TokenizerFast(dst.name, legacy=False)
else:
self.tokenizer = T5TokenizerFast(tokenizer_name, legacy=False)
self.tokenizer.pad_token_id = 1
self.tokenizer.eos_token_id = 1
self.context_length = context_length
def save_pretrained(self, dest):
self.tokenizer.save_pretrained(dest)
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor:
# same cleaning as for default tokenizer, except lowercasing
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
if isinstance(texts, str):
texts = [texts]
context_length = context_length or self.context_length
assert context_length, 'Please set a valid context length in class init or call.'
texts = [canonicalize_text(basic_clean(text)) for text in texts]
output = self.tokenizer(
texts,
return_tensors='pt',
max_length=context_length,
padding='max_length',
truncation=True,
)
return output.input_ids
|