|
<!--Copyright 2024 The HuggingFace Team. All rights reserved. |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with |
|
the License. You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on |
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the |
|
specific language governing permissions and limitations under the License. |
|
--> |
|
|
|
# Distilled Stable Diffusion inference |
|
|
|
[[open-in-colab]] |
|
|
|
Stable Diffusion inference can be a computationally intensive process because it must iteratively denoise the latents to generate an image. To reduce the computational burden, you can use a *distilled* version of the Stable Diffusion model from [Nota AI](https://huggingface.co/nota-ai). The distilled version of their Stable Diffusion model eliminates some of the residual and attention blocks from the UNet, reducing the model size by 51% and improving latency on CPU/GPU by 43%. |
|
|
|
<Tip> |
|
|
|
Read this [blog post](https://huggingface.co/blog/sd_distillation) to learn more about how knowledge distillation training works to produce a faster, smaller, and cheaper generative model. |
|
|
|
</Tip> |
|
|
|
Let's load the distilled Stable Diffusion model and compare it against the original Stable Diffusion model: |
|
|
|
```py |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
|
|
distilled = StableDiffusionPipeline.from_pretrained( |
|
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True, |
|
).to("cuda") |
|
|
|
original = StableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, use_safetensors=True, |
|
).to("cuda") |
|
``` |
|
|
|
Given a prompt, get the inference time for the original model: |
|
|
|
```py |
|
import time |
|
|
|
seed = 2023 |
|
generator = torch.manual_seed(seed) |
|
|
|
NUM_ITERS_TO_RUN = 3 |
|
NUM_INFERENCE_STEPS = 25 |
|
NUM_IMAGES_PER_PROMPT = 4 |
|
|
|
prompt = "a golden vase with different flowers" |
|
|
|
start = time.time_ns() |
|
for _ in range(NUM_ITERS_TO_RUN): |
|
images = original( |
|
prompt, |
|
num_inference_steps=NUM_INFERENCE_STEPS, |
|
generator=generator, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT |
|
).images |
|
end = time.time_ns() |
|
original_sd = f"{(end - start) / 1e6:.1f}" |
|
|
|
print(f"Execution time -- {original_sd} ms\n") |
|
"Execution time -- 45781.5 ms" |
|
``` |
|
|
|
Time the distilled model inference: |
|
|
|
```py |
|
start = time.time_ns() |
|
for _ in range(NUM_ITERS_TO_RUN): |
|
images = distilled( |
|
prompt, |
|
num_inference_steps=NUM_INFERENCE_STEPS, |
|
generator=generator, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT |
|
).images |
|
end = time.time_ns() |
|
|
|
distilled_sd = f"{(end - start) / 1e6:.1f}" |
|
print(f"Execution time -- {distilled_sd} ms\n") |
|
"Execution time -- 29884.2 ms" |
|
``` |
|
|
|
<div class="flex gap-4"> |
|
<div> |
|
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/original_sd.png"/> |
|
<figcaption class="mt-2 text-center text-sm text-gray-500">original Stable Diffusion (45781.5 ms)</figcaption> |
|
</div> |
|
<div> |
|
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/distilled_sd.png"/> |
|
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion (29884.2 ms)</figcaption> |
|
</div> |
|
</div> |
|
|
|
## Tiny AutoEncoder |
|
|
|
To speed inference up even more, use a tiny distilled version of the [Stable Diffusion VAE](https://huggingface.co/sayakpaul/taesdxl-diffusers) to denoise the latents into images. Replace the VAE in the distilled Stable Diffusion model with the tiny VAE: |
|
|
|
```py |
|
from diffusers import AutoencoderTiny |
|
|
|
distilled.vae = AutoencoderTiny.from_pretrained( |
|
"sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True, |
|
).to("cuda") |
|
``` |
|
|
|
Time the distilled model and distilled VAE inference: |
|
|
|
```py |
|
start = time.time_ns() |
|
for _ in range(NUM_ITERS_TO_RUN): |
|
images = distilled( |
|
prompt, |
|
num_inference_steps=NUM_INFERENCE_STEPS, |
|
generator=generator, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT |
|
).images |
|
end = time.time_ns() |
|
|
|
distilled_tiny_sd = f"{(end - start) / 1e6:.1f}" |
|
print(f"Execution time -- {distilled_tiny_sd} ms\n") |
|
"Execution time -- 27165.7 ms" |
|
``` |
|
|
|
<div class="flex justify-center"> |
|
<div> |
|
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/distilled_sd_vae.png" /> |
|
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion + Tiny AutoEncoder (27165.7 ms)</figcaption> |
|
</div> |
|
</div> |
|
|