File size: 1,149 Bytes
01c8d2e 874c77e 01c8d2e 874c77e 603711f d84bb40 01c8d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
import os
model = tf.keras.models.load_model('my_cnn_model_7.h5')
def predict_image(img):
img = img.resize((64, 64))
img_array = np.array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array / 255.0
predictions = model.predict(img_array)
prediction_label = (predictions > 0.5).astype("int32")
return prediction_label[0][0]
# Streamlit UI
st.title("Image Classifier: Real vs Fake")
st.write("Upload an image to classify it as 'Real' or 'Fake'.")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
img = Image.open(uploaded_file)
img_resized = img.resize((100, 100))
st.image(img_resized, caption="Uploaded Image.", use_container_width=False)
if st.button('Classify'):
prediction = predict_image(img)
if prediction == 1:
st.write("Prediction: The given image is **Real**")
else:
st.write("Prediction: The given image is **Fake**") |