Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
import os
|
6 |
+
|
7 |
+
|
8 |
+
model = tf.keras.models.load_model('my_cnn_model_7.h5')
|
9 |
+
|
10 |
+
|
11 |
+
def predict_image(img):
|
12 |
+
|
13 |
+
img = img.resize((64, 64))
|
14 |
+
img_array = np.array(img)
|
15 |
+
img_array = np.expand_dims(img_array, axis=0)
|
16 |
+
img_array = img_array / 255.0
|
17 |
+
|
18 |
+
|
19 |
+
predictions = model.predict(img_array)
|
20 |
+
|
21 |
+
prediction_label = (predictions > 0.5).astype("int32")
|
22 |
+
|
23 |
+
return prediction_label[0][0]
|
24 |
+
|
25 |
+
# Streamlit UI
|
26 |
+
st.title("Image Classifier: Real vs Fake")
|
27 |
+
st.write("Upload an image to classify it as 'Real' or 'Fake'.")
|
28 |
+
|
29 |
+
|
30 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
31 |
+
|
32 |
+
if uploaded_file is not None:
|
33 |
+
|
34 |
+
img = image.open(uploaded_file)
|
35 |
+
st.image(img, caption="Uploaded Image.", use_column_width=True)
|
36 |
+
|
37 |
+
|
38 |
+
if st.button('Classify'):
|
39 |
+
prediction = predict_image(img)
|
40 |
+
if prediction == 1:
|
41 |
+
st.write("Prediction: The given image is **Real**")
|
42 |
+
else:
|
43 |
+
st.write("Prediction: The given image is **Fake**")
|