annapurnapadmaprema-ji's picture
Create app.py
fae6aef verified
raw
history blame
2.31 kB
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load the model and tokenizer (make sure your model is correctly loaded here)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Specify the model path
model_name = "ipc_refined_approach_model" # Replace with your actual model path or name
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define your legal sections
sections = ['465', '467', '395', '332','353'] # Example sections, modify as per your actual list
# Streamlit UI setup
st.title("Legal Case Section Prediction")
# Get input text from user
st.subheader("Enter the legal text to predict the sections it belongs to:")
input_text = st.text_area("Input Text", height=250)
# Prediction function
def predict_text(text):
# Tokenize and encode input text
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
# Move inputs to the same device as the model
inputs = {key: value.to(device) for key, value in inputs.items()}
# Perform inference
model.eval()
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits # Ensure logits are accessed correctly
# Apply sigmoid to get probabilities
probs = torch.sigmoid(logits).detach().cpu().numpy() # Move to CPU for processing
# Convert probabilities to binary predictions (threshold 0.5)
predictions = {section: int(prob > 0.5) for section, prob in zip(sections, probs[0])}
# Return the sections the case belongs to
sections_belongs_to = [section for section, pred in predictions.items() if pred == 1]
return sections_belongs_to
# Show results if input text is provided
if input_text:
st.subheader("Prediction Results")
# Get predictions for the input text
predicted_sections = predict_text(input_text)
# Show predictions
if predicted_sections:
st.write(f"This case belongs to Section(s): {', '.join(predicted_sections)}")
else:
st.write("This case does not belong to any known section.")
else:
st.write("Please enter some text to predict the sections.")