Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
|
5 |
+
# Load the model and tokenizer (make sure your model is correctly loaded here)
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
# Specify the model path
|
9 |
+
model_name = "ipc_refined_approach_model" # Replace with your actual model path or name
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
+
model = model.to(device)
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Define your legal sections
|
16 |
+
sections = ['465', '467', '395', '332','353'] # Example sections, modify as per your actual list
|
17 |
+
|
18 |
+
# Streamlit UI setup
|
19 |
+
st.title("Legal Case Section Prediction")
|
20 |
+
|
21 |
+
# Get input text from user
|
22 |
+
st.subheader("Enter the legal text to predict the sections it belongs to:")
|
23 |
+
input_text = st.text_area("Input Text", height=250)
|
24 |
+
|
25 |
+
# Prediction function
|
26 |
+
def predict_text(text):
|
27 |
+
# Tokenize and encode input text
|
28 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
29 |
+
|
30 |
+
# Move inputs to the same device as the model
|
31 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
32 |
+
|
33 |
+
# Perform inference
|
34 |
+
model.eval()
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = model(**inputs)
|
37 |
+
logits = outputs.logits # Ensure logits are accessed correctly
|
38 |
+
|
39 |
+
# Apply sigmoid to get probabilities
|
40 |
+
probs = torch.sigmoid(logits).detach().cpu().numpy() # Move to CPU for processing
|
41 |
+
|
42 |
+
# Convert probabilities to binary predictions (threshold 0.5)
|
43 |
+
predictions = {section: int(prob > 0.5) for section, prob in zip(sections, probs[0])}
|
44 |
+
|
45 |
+
# Return the sections the case belongs to
|
46 |
+
sections_belongs_to = [section for section, pred in predictions.items() if pred == 1]
|
47 |
+
return sections_belongs_to
|
48 |
+
|
49 |
+
# Show results if input text is provided
|
50 |
+
if input_text:
|
51 |
+
st.subheader("Prediction Results")
|
52 |
+
|
53 |
+
# Get predictions for the input text
|
54 |
+
predicted_sections = predict_text(input_text)
|
55 |
+
|
56 |
+
# Show predictions
|
57 |
+
if predicted_sections:
|
58 |
+
st.write(f"This case belongs to Section(s): {', '.join(predicted_sections)}")
|
59 |
+
else:
|
60 |
+
st.write("This case does not belong to any known section.")
|
61 |
+
else:
|
62 |
+
st.write("Please enter some text to predict the sections.")
|