|
import streamlit as st |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
model_name = "ipc_refined_approach_model" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
model = model.to(device) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
sections = ['465', '467', '395', '332','353'] |
|
|
|
|
|
st.title("Legal Case Section Prediction") |
|
|
|
|
|
st.subheader("Enter the legal text to predict the sections it belongs to:") |
|
input_text = st.text_area("Input Text", height=250) |
|
|
|
|
|
def predict_text(text): |
|
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) |
|
|
|
|
|
inputs = {key: value.to(device) for key, value in inputs.items()} |
|
|
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
|
|
probs = torch.sigmoid(logits).detach().cpu().numpy() |
|
|
|
|
|
predictions = {section: int(prob > 0.5) for section, prob in zip(sections, probs[0])} |
|
|
|
|
|
sections_belongs_to = [section for section, pred in predictions.items() if pred == 1] |
|
return sections_belongs_to |
|
|
|
|
|
if input_text: |
|
st.subheader("Prediction Results") |
|
|
|
|
|
predicted_sections = predict_text(input_text) |
|
|
|
|
|
if predicted_sections: |
|
st.write(f"This case belongs to Section(s): {', '.join(predicted_sections)}") |
|
else: |
|
st.write("This case does not belong to any known section.") |
|
else: |
|
st.write("Please enter some text to predict the sections.") |
|
|