AnhP's picture
Upload 65 files
98bb602 verified
raw
history blame
40.7 kB
import io
import os
import six
import sys
import math
import librosa
import tempfile
import platform
import traceback
import audioread
import subprocess
import numpy as np
import soundfile as sf
from scipy.signal import correlate, hilbert
now_dir = os.getcwd()
sys.path.append(now_dir)
from main.configs.config import Config
translations = Config().translations
OPERATING_SYSTEM = platform.system()
SYSTEM_ARCH = platform.platform()
SYSTEM_PROC = platform.processor()
ARM = "arm"
AUTO_PHASE = "Automatic"
POSITIVE_PHASE = "Positive Phase"
NEGATIVE_PHASE = "Negative Phase"
NONE_P = ("None",)
LOW_P = ("Shifts: Low",)
MED_P = ("Shifts: Medium",)
HIGH_P = ("Shifts: High",)
VHIGH_P = "Shifts: Very High"
MAXIMUM_P = "Shifts: Maximum"
BASE_PATH_RUB = sys._MEIPASS if getattr(sys, 'frozen', False) else os.path.dirname(os.path.abspath(__file__))
DEVNULL = open(os.devnull, 'w') if six.PY2 else subprocess.DEVNULL
MAX_SPEC = "Max Spec"
MIN_SPEC = "Min Spec"
LIN_ENSE = "Linear Ensemble"
MAX_WAV = MAX_SPEC
MIN_WAV = MIN_SPEC
AVERAGE = "Average"
progress_value = 0
last_update_time = 0
is_macos = False
if OPERATING_SYSTEM == "Darwin":
wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest"
wav_resolution_float_resampling = "kaiser_best" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else wav_resolution
is_macos = True
else:
wav_resolution = "sinc_fastest"
wav_resolution_float_resampling = wav_resolution
def crop_center(h1, h2):
h1_shape = h1.size()
h2_shape = h2.size()
if h1_shape[3] == h2_shape[3]: return h1
elif h1_shape[3] < h2_shape[3]: raise ValueError("h1_shape[3] > h2_shape[3]")
s_time = (h1_shape[3] - h2_shape[3]) // 2
e_time = s_time + h2_shape[3]
h1 = h1[:, :, :, s_time:e_time]
return h1
def preprocess(X_spec):
return np.abs(X_spec), np.angle(X_spec)
def make_padding(width, cropsize, offset):
left = offset
roi_size = cropsize - offset * 2
if roi_size == 0: roi_size = cropsize
right = roi_size - (width % roi_size) + left
return left, right, roi_size
def normalize(wave, max_peak=1.0):
maxv = np.abs(wave).max()
if maxv > max_peak: wave *= max_peak / maxv
return wave
def auto_transpose(audio_array: np.ndarray):
if audio_array.shape[1] == 2: return audio_array.T
return audio_array
def write_array_to_mem(audio_data, subtype):
if isinstance(audio_data, np.ndarray):
audio_buffer = io.BytesIO()
sf.write(audio_buffer, audio_data, 44100, subtype=subtype, format="WAV")
audio_buffer.seek(0)
return audio_buffer
else: return audio_data
def spectrogram_to_image(spec, mode="magnitude"):
if mode == "magnitude":
y = np.abs(spec) if np.iscomplexobj(spec) else spec
y = np.log10(y**2 + 1e-8)
elif mode == "phase":
y = np.angle(spec) if np.iscomplexobj(spec) else spec
y -= y.min()
y *= 255 / y.max()
img = np.uint8(y)
if y.ndim == 3:
img = img.transpose(1, 2, 0)
img = np.concatenate([np.max(img, axis=2, keepdims=True), img], axis=2)
return img
def reduce_vocal_aggressively(X, y, softmask):
v = X - y
y_mag_tmp = np.abs(y)
v_mag_tmp = np.abs(v)
v_mask = v_mag_tmp > y_mag_tmp
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
return y_mag * np.exp(1.0j * np.angle(y))
def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
mask = y_mask
try:
if min_range < fade_size * 2: raise ValueError("min_range >= fade_size * 2")
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
weight = np.zeros_like(y_mask)
if len(artifact_idx) > 0:
start_idx = start_idx[artifact_idx]
end_idx = end_idx[artifact_idx]
old_e = None
for s, e in zip(start_idx, end_idx):
if old_e is not None and s - old_e < fade_size: s = old_e - fade_size * 2
if s != 0: weight[:, :, s : s + fade_size] = np.linspace(0, 1, fade_size)
else: s -= fade_size
if e != y_mask.shape[2]: weight[:, :, e - fade_size : e] = np.linspace(1, 0, fade_size)
else: e += fade_size
weight[:, :, s + fade_size : e - fade_size] = 1
old_e = e
v_mask = 1 - y_mask
y_mask += weight * v_mask
mask = y_mask
except Exception as e:
error_name = f"{type(e).__name__}"
traceback_text = "".join(traceback.format_tb(e.__traceback__))
message = f'{error_name}: "{e}"\n{traceback_text}"'
print(translations["not_success"], message)
return mask
def align_wave_head_and_tail(a, b):
l = min([a[0].size, b[0].size])
return a[:l, :l], b[:l, :l]
def convert_channels(spec, mp, band):
cc = mp.param["band"][band].get("convert_channels")
if "mid_side_c" == cc:
spec_left = np.add(spec[0], spec[1] * 0.25)
spec_right = np.subtract(spec[1], spec[0] * 0.25)
elif "mid_side" == cc:
spec_left = np.add(spec[0], spec[1]) / 2
spec_right = np.subtract(spec[0], spec[1])
elif "stereo_n" == cc:
spec_left = np.add(spec[0], spec[1] * 0.25) / 0.9375
spec_right = np.add(spec[1], spec[0] * 0.25) / 0.9375
else: return spec
return np.asfortranarray([spec_left, spec_right])
def combine_spectrograms(specs, mp, is_v51_model=False):
l = min([specs[i].shape[2] for i in specs])
spec_c = np.zeros(shape=(2, mp.param["bins"] + 1, l), dtype=np.complex64)
offset = 0
bands_n = len(mp.param["band"])
for d in range(1, bands_n + 1):
h = mp.param["band"][d]["crop_stop"] - mp.param["band"][d]["crop_start"]
spec_c[:, offset : offset + h, :l] = specs[d][:, mp.param["band"][d]["crop_start"] : mp.param["band"][d]["crop_stop"], :l]
offset += h
if offset > mp.param["bins"]: raise ValueError("Quá nhiều thùng")
if mp.param["pre_filter_start"] > 0:
if is_v51_model: spec_c *= get_lp_filter_mask(spec_c.shape[1], mp.param["pre_filter_start"], mp.param["pre_filter_stop"])
else:
if bands_n == 1: spec_c = fft_lp_filter(spec_c, mp.param["pre_filter_start"], mp.param["pre_filter_stop"])
else:
gp = 1
for b in range(mp.param["pre_filter_start"] + 1, mp.param["pre_filter_stop"]):
g = math.pow(10, -(b - mp.param["pre_filter_start"]) * (3.5 - gp) / 20.0)
gp = g
spec_c[:, b, :] *= g
return np.asfortranarray(spec_c)
def wave_to_spectrogram(wave, hop_length, n_fft, mp, band, is_v51_model=False):
if wave.ndim == 1: wave = np.asfortranarray([wave, wave])
if not is_v51_model:
if mp.param["reverse"]:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mp.param["mid_side"]:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mp.param["mid_side_b2"]:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
if is_v51_model: spec = convert_channels(spec, mp, band)
return spec
def spectrogram_to_wave(spec, hop_length=1024, mp={}, band=0, is_v51_model=True):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
if is_v51_model:
cc = mp.param["band"][band].get("convert_channels")
if "mid_side_c" == cc: return np.asfortranarray([np.subtract(wave_left / 1.0625, wave_right / 4.25), np.add(wave_right / 1.0625, wave_left / 4.25)])
elif "mid_side" == cc: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif "stereo_n" == cc: return np.asfortranarray([np.subtract(wave_left, wave_right * 0.25), np.subtract(wave_right, wave_left * 0.25)])
else:
if mp.param["reverse"]: return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mp.param["mid_side"]: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif mp.param["mid_side_b2"]: return np.asfortranarray([np.add(wave_right / 1.25, 0.4 * wave_left), np.subtract(wave_left / 1.25, 0.4 * wave_right)])
return np.asfortranarray([wave_left, wave_right])
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None, is_v51_model=False):
bands_n = len(mp.param["band"])
offset = 0
for d in range(1, bands_n + 1):
bp = mp.param["band"][d]
spec_s = np.zeros(shape=(2, bp["n_fft"] // 2 + 1, spec_m.shape[2]), dtype=complex)
h = bp["crop_stop"] - bp["crop_start"]
spec_s[:, bp["crop_start"] : bp["crop_stop"], :] = spec_m[:, offset : offset + h, :]
offset += h
if d == bands_n:
if extra_bins_h:
max_bin = bp["n_fft"] // 2
spec_s[:, max_bin - extra_bins_h : max_bin, :] = extra_bins[:, :extra_bins_h, :]
if bp["hpf_start"] > 0:
if is_v51_model: spec_s *= get_hp_filter_mask(spec_s.shape[1], bp["hpf_start"], bp["hpf_stop"] - 1)
else: spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
if bands_n == 1: wave = spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model)
else: wave = np.add(wave, spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model))
else:
sr = mp.param["band"][d + 1]["sr"]
if d == 1:
if is_v51_model: spec_s *= get_lp_filter_mask(spec_s.shape[1], bp["lpf_start"], bp["lpf_stop"])
else: spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
try:
wave = librosa.resample(spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model), orig_sr=bp["sr"], target_sr=sr, res_type=wav_resolution)
except ValueError as e:
print(f"{translations['resample_error']}: {e}")
print(f"{translations['shapes']} Spec_s: {spec_s.shape}, SR: {sr}, {translations['wav_resolution']}: {wav_resolution}")
else:
if is_v51_model:
spec_s *= get_hp_filter_mask(spec_s.shape[1], bp["hpf_start"], bp["hpf_stop"] - 1)
spec_s *= get_lp_filter_mask(spec_s.shape[1], bp["lpf_start"], bp["lpf_stop"])
else:
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model))
try:
wave = librosa.resample(wave2, orig_sr=bp["sr"], target_sr=sr, res_type=wav_resolution)
except ValueError as e:
print(f"{translations['resample_error']}: {e}")
print(f"{translations['shapes']} Spec_s: {spec_s.shape}, SR: {sr}, {translations['wav_resolution']}: {wav_resolution}")
return wave
def get_lp_filter_mask(n_bins, bin_start, bin_stop):
return np.concatenate([np.ones((bin_start - 1, 1)), np.linspace(1, 0, bin_stop - bin_start + 1)[:, None], np.zeros((n_bins - bin_stop, 1))], axis=0)
def get_hp_filter_mask(n_bins, bin_start, bin_stop):
return np.concatenate([np.zeros((bin_stop + 1, 1)), np.linspace(0, 1, 1 + bin_start - bin_stop)[:, None], np.ones((n_bins - bin_start - 2, 1))], axis=0)
def fft_lp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop):
g -= 1 / (bin_stop - bin_start)
spec[:, b, :] = g * spec[:, b, :]
spec[:, bin_stop:, :] *= 0
return spec
def fft_hp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop, -1):
g -= 1 / (bin_start - bin_stop)
spec[:, b, :] = g * spec[:, b, :]
spec[:, 0 : bin_stop + 1, :] *= 0
return spec
def spectrogram_to_wave_old(spec, hop_length=1024):
if spec.ndim == 2: wave = librosa.istft(spec, hop_length=hop_length)
elif spec.ndim == 3:
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def wave_to_spectrogram_old(wave, hop_length, n_fft):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)
return np.asfortranarray([spec_left, spec_right])
def mirroring(a, spec_m, input_high_end, mp):
if "mirroring" == a:
mirror = np.flip(np.abs(spec_m[:, mp.param["pre_filter_start"] - 10 - input_high_end.shape[1] : mp.param["pre_filter_start"] - 10, :]), 1)
mirror = mirror * np.exp(1.0j * np.angle(input_high_end))
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
if "mirroring2" == a:
mirror = np.flip(np.abs(spec_m[:, mp.param["pre_filter_start"] - 10 - input_high_end.shape[1] : mp.param["pre_filter_start"] - 10, :]), 1)
mi = np.multiply(mirror, input_high_end * 1.7)
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
aggr = aggressiveness["value"] * 2
if aggr != 0:
if is_non_accom_stem:
aggr = 1 - aggr
if np.any(aggr > 10) or np.any(aggr < -10): print(f"{translations['warnings']}: {aggr}")
aggr = [aggr, aggr]
if aggressiveness["aggr_correction"] is not None:
aggr[0] += aggressiveness["aggr_correction"]["left"]
aggr[1] += aggressiveness["aggr_correction"]["right"]
for ch in range(2):
mask[ch, : aggressiveness["split_bin"]] = np.power(mask[ch, : aggressiveness["split_bin"]], 1 + aggr[ch] / 3)
mask[ch, aggressiveness["split_bin"] :] = np.power(mask[ch, aggressiveness["split_bin"] :], 1 + aggr[ch])
return mask
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl)
spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl)
wave_right = librosa.istft(spec_right, hop_length=hl)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def spec_effects(wave, algorithm="Default", value=None):
if np.isnan(wave).any() or np.isinf(wave).any(): print(f"{translations['warnings_2']}: {wave.shape}")
spec = [stft(wave[0], 2048, 1024), stft(wave[1], 2048, 1024)]
if algorithm == "Min_Mag":
v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m, 1024)
elif algorithm == "Max_Mag":
v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m, 1024)
elif algorithm == "Default": wave = (wave[1] * value) + (wave[0] * (1 - value))
elif algorithm == "Invert_p":
X_mag = np.abs(spec[0])
y_mag = np.abs(spec[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = spec[1] - max_mag * np.exp(1.0j * np.angle(spec[0]))
wave = istft(v_spec, 1024)
return wave
def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
if wave.ndim == 1: wave = np.asfortranarray([wave, wave])
return wave
def wave_to_spectrogram_no_mp(wave):
spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
if spec.ndim == 1: spec = np.asfortranarray([spec, spec])
return spec
def invert_audio(specs, invert_p=True):
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:, :, :ln]
specs[1] = specs[1][:, :, :ln]
if invert_p:
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.0j * np.angle(specs[0]))
else:
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
v_spec = specs[0] - specs[1]
return v_spec
def invert_stem(mixture, stem):
mixture = wave_to_spectrogram_no_mp(mixture)
stem = wave_to_spectrogram_no_mp(stem)
output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))
return -output.T
def ensembling(a, inputs, is_wavs=False):
for i in range(1, len(inputs)):
if i == 1: input = inputs[0]
if is_wavs:
ln = min([input.shape[1], inputs[i].shape[1]])
input = input[:, :ln]
inputs[i] = inputs[i][:, :ln]
else:
ln = min([input.shape[2], inputs[i].shape[2]])
input = input[:, :, :ln]
inputs[i] = inputs[i][:, :, :ln]
if MIN_SPEC == a: input = np.where(np.abs(inputs[i]) <= np.abs(input), inputs[i], input)
if MAX_SPEC == a: input = np.where(np.abs(inputs[i]) >= np.abs(input), inputs[i], input)
return input
def ensemble_for_align(waves):
specs = []
for wav in waves:
spec = wave_to_spectrogram_no_mp(wav.T)
specs.append(spec)
wav_aligned = spectrogram_to_wave_no_mp(ensembling(MIN_SPEC, specs)).T
wav_aligned = match_array_shapes(wav_aligned, waves[1], is_swap=True)
return wav_aligned
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path, is_wave=False, is_array=False):
wavs_ = []
if algorithm == AVERAGE:
output = average_audio(audio_input)
samplerate = 44100
else:
specs = []
for i in range(len(audio_input)):
wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
wavs_.append(wave)
spec = wave if is_wave else wave_to_spectrogram_no_mp(wave)
specs.append(spec)
wave_shapes = [w.shape[1] for w in wavs_]
target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
output = ensembling(algorithm, specs, is_wavs=True) if is_wave else spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
output = to_shape(output, target_shape.shape)
sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)
def to_shape(x, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
pad_value = target_dim - x_dim
pad_tuple = (0, pad_value)
padding_list.append(pad_tuple)
return np.pad(x, tuple(padding_list), mode="constant")
def to_shape_minimize(x: np.ndarray, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
pad_value = target_dim - x_dim
pad_tuple = (0, pad_value)
padding_list.append(pad_tuple)
return np.pad(x, tuple(padding_list), mode="constant")
def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024):
if len(audio.shape) == 2:
channel = np.argmax(np.sum(np.abs(audio), axis=1))
audio = audio[channel]
for i in range(0, len(audio), frame_length):
if np.max(np.abs(audio[i : i + frame_length])) > silence_threshold: return (i / sr) * 1000
return (len(audio) / sr) * 1000
def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024):
def find_silence_end(audio):
if len(audio.shape) == 2:
channel = np.argmax(np.sum(np.abs(audio), axis=1))
audio_mono = audio[channel]
else: audio_mono = audio
for i in range(0, len(audio_mono), frame_length):
if np.max(np.abs(audio_mono[i : i + frame_length])) > silence_threshold: return i
return len(audio_mono)
ref_silence_end = find_silence_end(reference_audio)
target_silence_end = find_silence_end(target_audio)
silence_difference = ref_silence_end - target_silence_end
try:
ref_silence_end_p = (ref_silence_end / 44100) * 1000
target_silence_end_p = (target_silence_end / 44100) * 1000
silence_difference_p = ref_silence_end_p - target_silence_end_p
print("im lặng khác biệt: ", silence_difference_p)
except Exception as e:
pass
if silence_difference > 0:
silence_to_add = np.zeros((target_audio.shape[0], silence_difference))if len(target_audio.shape) == 2 else np.zeros(silence_difference)
return np.hstack((silence_to_add, target_audio))
elif silence_difference < 0:
if len(target_audio.shape) == 2: return target_audio[:, -silence_difference:]
else: return target_audio[-silence_difference:]
else: return target_audio
def match_array_shapes(array_1: np.ndarray, array_2: np.ndarray, is_swap=False):
if is_swap: array_1, array_2 = array_1.T, array_2.T
if array_1.shape[1] > array_2.shape[1]: array_1 = array_1[:, : array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(array_1, ((0, 0), (0, padding)), "constant", constant_values=0)
if is_swap: array_1, array_2 = array_1.T, array_2.T
return array_1
def match_mono_array_shapes(array_1: np.ndarray, array_2: np.ndarray):
if len(array_1) > len(array_2): array_1 = array_1[: len(array_2)]
elif len(array_1) < len(array_2):
padding = len(array_2) - len(array_1)
array_1 = np.pad(array_1, (0, padding), "constant", constant_values=0)
return array_1
def change_pitch_semitones(y, sr, semitone_shift):
factor = 2 ** (semitone_shift / 12)
y_pitch_tuned = []
for y_channel in y:
y_pitch_tuned.append(librosa.resample(y_channel, orig_sr=sr, target_sr=sr * factor, res_type=wav_resolution_float_resampling))
y_pitch_tuned = np.array(y_pitch_tuned)
new_sr = sr * factor
return y_pitch_tuned, new_sr
def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False, is_time_correction=True):
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1: wav = np.asfortranarray([wav, wav])
if not is_time_correction: wav_mix = change_pitch_semitones(wav, 44100, semitone_shift=-rate)[0]
else:
if is_pitch:
wav_1 = pitch_shift(wav[0], sr, rate, rbargs=None)
wav_2 = pitch_shift(wav[1], sr, rate, rbargs=None)
else:
wav_1 = time_stretch(wav[0], sr, rate, rbargs=None)
wav_2 = time_stretch(wav[1], sr, rate, rbargs=None)
if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape: wav_1 = to_shape(wav_1, wav_2.shape)
wav_mix = np.asfortranarray([wav_1, wav_2])
sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
save_format(export_path)
def average_audio(audio):
waves = []
wave_shapes = []
final_waves = []
for i in range(len(audio)):
wave = librosa.load(audio[i], sr=44100, mono=False)
waves.append(wave[0])
wave_shapes.append(wave[0].shape[1])
wave_shapes_index = wave_shapes.index(max(wave_shapes))
target_shape = waves[wave_shapes_index]
waves.pop(wave_shapes_index)
final_waves.append(target_shape)
for n_array in waves:
wav_target = to_shape(n_array, target_shape.shape)
final_waves.append(wav_target)
waves = sum(final_waves)
waves = waves / len(audio)
return waves
def average_dual_sources(wav_1, wav_2, value):
if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape: wav_1 = to_shape(wav_1, wav_2.shape)
wave = (wav_1 * value) + (wav_2 * (1 - value))
return wave
def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_2 = wav_2[:, :ln]
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_1 = wav_1[:, :ln]
wav_2 = wav_2[:, :ln]
return wav_2
def reshape_sources_ref(wav_1_shape, wav_2: np.ndarray):
if wav_1_shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1_shape)
return wav_2
def combine_arrarys(audio_sources, is_swap=False):
source = np.zeros_like(max(audio_sources, key=np.size))
for v in audio_sources:
v = match_array_shapes(v, source, is_swap=is_swap)
source += v
return source
def combine_audio(paths: list, audio_file_base=None, wav_type_set="FLOAT", save_format=None):
source = combine_arrarys([load_audio(i) for i in paths])
save_path = f"{audio_file_base}_combined.wav"
sf.write(save_path, source.T, 44100, subtype=wav_type_set)
save_format(save_path)
def reduce_mix_bv(inst_source, voc_source, reduction_rate=0.9):
inst_source = inst_source * (1 - reduction_rate)
mix_reduced = combine_arrarys([inst_source, voc_source], is_swap=True)
return mix_reduced
def organize_inputs(inputs):
input_list = {"target": None, "reference": None, "reverb": None, "inst": None}
for i in inputs:
if i.endswith("_(Vocals).wav"): input_list["reference"] = i
elif "_RVC_" in i: input_list["target"] = i
elif i.endswith("reverbed_stem.wav"): input_list["reverb"] = i
elif i.endswith("_(Instrumental).wav"): input_list["inst"] = i
return input_list
def check_if_phase_inverted(wav1, wav2, is_mono=False):
if not is_mono:
wav1 = np.mean(wav1, axis=0)
wav2 = np.mean(wav2, axis=0)
correlation = np.corrcoef(wav1[:1000], wav2[:1000])
return correlation[0, 1] < 0
def align_audio(file1, file2, file2_aligned, file_subtracted, wav_type_set, is_save_aligned, command_Text, save_format, align_window: list, align_intro_val: list, db_analysis: tuple, set_progress_bar, phase_option, phase_shifts, is_match_silence, is_spec_match):
global progress_value
progress_value = 0
is_mono = False
def get_diff(a, b):
corr = np.correlate(a, b, "full")
diff = corr.argmax() - (b.shape[0] - 1)
return diff
def progress_bar(length):
global progress_value
progress_value += 1
if (0.90 / length * progress_value) >= 0.9: length = progress_value + 1
set_progress_bar(0.1, (0.9 / length * progress_value))
if file1.endswith(".mp3") and is_macos:
length1 = rerun_mp3(file1)
wav1, sr1 = librosa.load(file1, duration=length1, sr=44100, mono=False)
else: wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
if file2.endswith(".mp3") and is_macos:
length2 = rerun_mp3(file2)
wav2, sr2 = librosa.load(file2, duration=length2, sr=44100, mono=False)
else: wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
if wav1.ndim == 1 and wav2.ndim == 1: is_mono = True
elif wav1.ndim == 1: wav1 = np.asfortranarray([wav1, wav1])
elif wav2.ndim == 1: wav2 = np.asfortranarray([wav2, wav2])
if phase_option == AUTO_PHASE:
if check_if_phase_inverted(wav1, wav2, is_mono=is_mono): wav2 = -wav2
elif phase_option == POSITIVE_PHASE: wav2 = +wav2
elif phase_option == NEGATIVE_PHASE: wav2 = -wav2
if is_match_silence: wav2 = adjust_leading_silence(wav2, wav1)
wav1_length = int(librosa.get_duration(y=wav1, sr=44100))
wav2_length = int(librosa.get_duration(y=wav2, sr=44100))
if not is_mono:
wav1 = wav1.transpose()
wav2 = wav2.transpose()
wav2_org = wav2.copy()
command_Text(translations["process_file"])
seconds_length = min(wav1_length, wav2_length)
wav2_aligned_sources = []
for sec_len in align_intro_val:
sec_seg = 1 if sec_len == 1 else int(seconds_length // sec_len)
index = sr1 * sec_seg
if is_mono:
samp1, samp2 = wav1[index : index + sr1], wav2[index : index + sr1]
diff = get_diff(samp1, samp2)
else:
index = sr1 * sec_seg
samp1, samp2 = wav1[index : index + sr1, 0], wav2[index : index + sr1, 0]
samp1_r, samp2_r = wav1[index : index + sr1, 1], wav2[index : index + sr1, 1]
diff, diff_r = get_diff(samp1, samp2), get_diff(samp1_r, samp2_r)
if diff > 0:
zeros_to_append = np.zeros(diff) if is_mono else np.zeros((diff, 2))
wav2_aligned = np.append(zeros_to_append, wav2_org, axis=0)
elif diff < 0: wav2_aligned = wav2_org[-diff:]
else: wav2_aligned = wav2_org
if not any(np.array_equal(wav2_aligned, source) for source in wav2_aligned_sources): wav2_aligned_sources.append(wav2_aligned)
unique_sources = len(wav2_aligned_sources)
sub_mapper_big_mapper = {}
for s in wav2_aligned_sources:
wav2_aligned = match_mono_array_shapes(s, wav1) if is_mono else match_array_shapes(s, wav1, is_swap=True)
if align_window:
wav_sub = time_correction(wav1, wav2_aligned, seconds_length, align_window=align_window, db_analysis=db_analysis, progress_bar=progress_bar, unique_sources=unique_sources, phase_shifts=phase_shifts)
wav_sub_size = np.abs(wav_sub).mean()
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size: wav_sub}}
else:
wav2_aligned = wav2_aligned * np.power(10, db_analysis[0] / 20)
db_range = db_analysis[1]
for db_adjustment in db_range:
s_adjusted = wav2_aligned * (10 ** (db_adjustment / 20))
wav_sub = wav1 - s_adjusted
wav_sub_size = np.abs(wav_sub).mean()
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size: wav_sub}}
sub_mapper_value_list = list(sub_mapper_big_mapper.values())
wav_sub = ensemble_for_align(list(sub_mapper_big_mapper.values())) if is_spec_match and len(sub_mapper_value_list) >= 2 else ensemble_wav(list(sub_mapper_big_mapper.values()))
wav_sub = np.clip(wav_sub, -1, +1)
command_Text(translations["save_instruments"])
if is_save_aligned or is_spec_match:
wav1 = match_mono_array_shapes(wav1, wav_sub) if is_mono else match_array_shapes(wav1, wav_sub, is_swap=True)
wav2_aligned = wav1 - wav_sub
if is_spec_match:
if wav1.ndim == 1 and wav2.ndim == 1:
wav2_aligned = np.asfortranarray([wav2_aligned, wav2_aligned]).T
wav1 = np.asfortranarray([wav1, wav1]).T
wav2_aligned = ensemble_for_align([wav2_aligned, wav1])
wav_sub = wav1 - wav2_aligned
if is_save_aligned:
sf.write(file2_aligned, wav2_aligned, sr1, subtype=wav_type_set)
save_format(file2_aligned)
sf.write(file_subtracted, wav_sub, sr1, subtype=wav_type_set)
save_format(file_subtracted)
def phase_shift_hilbert(signal, degree):
analytic_signal = hilbert(signal)
return np.cos(np.radians(degree)) * analytic_signal.real - np.sin(np.radians(degree)) * analytic_signal.imag
def get_phase_shifted_tracks(track, phase_shift):
if phase_shift == 180: return [track, -track]
step = phase_shift
end = 180 - (180 % step) if 180 % step == 0 else 181
phase_range = range(step, end, step)
flipped_list = [track, -track]
for i in phase_range:
flipped_list.extend([phase_shift_hilbert(track, i), phase_shift_hilbert(track, -i)])
return flipped_list
def time_correction(mix: np.ndarray, instrumental: np.ndarray, seconds_length, align_window, db_analysis, sr=44100, progress_bar=None, unique_sources=None, phase_shifts=NONE_P):
def align_tracks(track1, track2):
shifted_tracks = {}
track2 = track2 * np.power(10, db_analysis[0] / 20)
db_range = db_analysis[1]
track2_flipped = [track2] if phase_shifts == 190 else get_phase_shifted_tracks(track2, phase_shifts)
for db_adjustment in db_range:
for t in track2_flipped:
track2_adjusted = t * (10 ** (db_adjustment / 20))
corr = correlate(track1, track2_adjusted)
delay = np.argmax(np.abs(corr)) - (len(track1) - 1)
track2_shifted = np.roll(track2_adjusted, shift=delay)
track2_shifted_sub = track1 - track2_shifted
mean_abs_value = np.abs(track2_shifted_sub).mean()
shifted_tracks[mean_abs_value] = track2_shifted
return shifted_tracks[min(shifted_tracks.keys())]
assert mix.shape == instrumental.shape, translations["assert"].format(mixshape=mix.shape, instrumentalshape=instrumental.shape)
seconds_length = seconds_length // 2
sub_mapper = {}
progress_update_interval = 120
total_iterations = 0
if len(align_window) > 2: progress_update_interval = 320
for secs in align_window:
step = secs / 2
window_size = int(sr * secs)
step_size = int(sr * step)
if len(mix.shape) == 1:
total_mono = (len(range(0, len(mix) - window_size, step_size)) // progress_update_interval) * unique_sources
total_iterations += total_mono
else:
total_stereo_ = len(range(0, len(mix[:, 0]) - window_size, step_size)) * 2
total_stereo = (total_stereo_ // progress_update_interval) * unique_sources
total_iterations += total_stereo
for secs in align_window:
sub = np.zeros_like(mix)
divider = np.zeros_like(mix)
step = secs / 2
window_size = int(sr * secs)
step_size = int(sr * step)
window = np.hanning(window_size)
if len(mix.shape) == 1:
counter = 0
for i in range(0, len(mix) - window_size, step_size):
counter += 1
if counter % progress_update_interval == 0: progress_bar(total_iterations)
window_mix = mix[i : i + window_size] * window
window_instrumental = instrumental[i : i + window_size] * window
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
sub[i : i + window_size] += window_mix - window_instrumental_aligned
divider[i : i + window_size] += window
else:
counter = 0
for ch in range(mix.shape[1]):
for i in range(0, len(mix[:, ch]) - window_size, step_size):
counter += 1
if counter % progress_update_interval == 0: progress_bar(total_iterations)
window_mix = mix[i : i + window_size, ch] * window
window_instrumental = instrumental[i : i + window_size, ch] * window
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
sub[i : i + window_size, ch] += window_mix - window_instrumental_aligned
divider[i : i + window_size, ch] += window
sub = np.where(divider > 1e-6, sub / divider, sub)
sub_size = np.abs(sub).mean()
sub_mapper = {**sub_mapper, **{sub_size: sub}}
sub = ensemble_wav(list(sub_mapper.values()), split_size=12)
return sub
def ensemble_wav(waveforms, split_size=240):
waveform_thirds = {i: np.array_split(waveform, split_size) for i, waveform in enumerate(waveforms)}
final_waveform = []
for third_idx in range(split_size):
means = [np.abs(waveform_thirds[i][third_idx]).mean() for i in range(len(waveforms))]
min_index = np.argmin(means)
final_waveform.append(waveform_thirds[min_index][third_idx])
final_waveform = np.concatenate(final_waveform)
return final_waveform
def ensemble_wav_min(waveforms):
for i in range(1, len(waveforms)):
if i == 1: wave = waveforms[0]
ln = min(len(wave), len(waveforms[i]))
wave = wave[:ln]
waveforms[i] = waveforms[i][:ln]
wave = np.where(np.abs(waveforms[i]) <= np.abs(wave), waveforms[i], wave)
return wave
def align_audio_test(wav1, wav2, sr1=44100):
def get_diff(a, b):
corr = np.correlate(a, b, "full")
diff = corr.argmax() - (b.shape[0] - 1)
return diff
wav1 = wav1.transpose()
wav2 = wav2.transpose()
wav2_org = wav2.copy()
index = sr1
samp1 = wav1[index : index + sr1, 0]
samp2 = wav2[index : index + sr1, 0]
diff = get_diff(samp1, samp2)
if diff > 0: wav2_aligned = np.append(np.zeros((diff, 1)), wav2_org, axis=0)
elif diff < 0: wav2_aligned = wav2_org[-diff:]
else: wav2_aligned = wav2_org
return wav2_aligned
def load_audio(audio_file):
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1: wav = np.asfortranarray([wav, wav])
return wav
def rerun_mp3(audio_file):
with audioread.audio_open(audio_file) as f:
track_length = int(f.duration)
return track_length
def __rubberband(y, sr, **kwargs):
assert sr > 0
fd, infile = tempfile.mkstemp(suffix='.wav')
os.close(fd)
fd, outfile = tempfile.mkstemp(suffix='.wav')
os.close(fd)
sf.write(infile, y, sr)
try:
arguments = [os.path.join(BASE_PATH_RUB, 'rubberband'), '-q']
for key, value in six.iteritems(kwargs):
arguments.append(str(key))
arguments.append(str(value))
arguments.extend([infile, outfile])
subprocess.check_call(arguments, stdout=DEVNULL, stderr=DEVNULL)
y_out, _ = sf.read(outfile, always_2d=True)
if y.ndim == 1: y_out = np.squeeze(y_out)
except OSError as exc:
six.raise_from(RuntimeError(translations["rubberband"]), exc)
finally:
os.unlink(infile)
os.unlink(outfile)
return y_out
def time_stretch(y, sr, rate, rbargs=None):
if rate <= 0: raise ValueError(translations["rate"])
if rate == 1.0: return y
if rbargs is None: rbargs = dict()
rbargs.setdefault('--tempo', rate)
return __rubberband(y, sr, **rbargs)
def pitch_shift(y, sr, n_steps, rbargs=None):
if n_steps == 0: return y
if rbargs is None: rbargs = dict()
rbargs.setdefault('--pitch', n_steps)
return __rubberband(y, sr, **rbargs)