File size: 40,736 Bytes
98bb602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
import io
import os
import six
import sys
import math
import librosa
import tempfile
import platform
import traceback
import audioread
import subprocess

import numpy as np
import soundfile as sf

from scipy.signal import correlate, hilbert

now_dir = os.getcwd()
sys.path.append(now_dir)

from main.configs.config import Config
translations = Config().translations

OPERATING_SYSTEM = platform.system()
SYSTEM_ARCH = platform.platform()
SYSTEM_PROC = platform.processor()
ARM = "arm"
AUTO_PHASE = "Automatic"
POSITIVE_PHASE = "Positive Phase"
NEGATIVE_PHASE = "Negative Phase"
NONE_P = ("None",)
LOW_P = ("Shifts: Low",)
MED_P = ("Shifts: Medium",)
HIGH_P = ("Shifts: High",)
VHIGH_P = "Shifts: Very High"
MAXIMUM_P = "Shifts: Maximum"
BASE_PATH_RUB = sys._MEIPASS if getattr(sys, 'frozen', False) else os.path.dirname(os.path.abspath(__file__))
DEVNULL = open(os.devnull, 'w') if six.PY2 else subprocess.DEVNULL
MAX_SPEC = "Max Spec"
MIN_SPEC = "Min Spec"
LIN_ENSE = "Linear Ensemble"
MAX_WAV = MAX_SPEC
MIN_WAV = MIN_SPEC
AVERAGE = "Average"

progress_value = 0
last_update_time = 0
is_macos = False

if OPERATING_SYSTEM == "Darwin":
    wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest"
    wav_resolution_float_resampling = "kaiser_best" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else wav_resolution
    is_macos = True
else:
    wav_resolution = "sinc_fastest"
    wav_resolution_float_resampling = wav_resolution

def crop_center(h1, h2):
    h1_shape = h1.size()
    h2_shape = h2.size()

    if h1_shape[3] == h2_shape[3]: return h1
    elif h1_shape[3] < h2_shape[3]: raise ValueError("h1_shape[3] > h2_shape[3]")

    s_time = (h1_shape[3] - h2_shape[3]) // 2
    e_time = s_time + h2_shape[3]

    h1 = h1[:, :, :, s_time:e_time]

    return h1

def preprocess(X_spec):
    return np.abs(X_spec), np.angle(X_spec)

def make_padding(width, cropsize, offset):
    left = offset
    roi_size = cropsize - offset * 2

    if roi_size == 0: roi_size = cropsize

    right = roi_size - (width % roi_size) + left

    return left, right, roi_size

def normalize(wave, max_peak=1.0):
    maxv = np.abs(wave).max()

    if maxv > max_peak: wave *= max_peak / maxv

    return wave

def auto_transpose(audio_array: np.ndarray):
    if audio_array.shape[1] == 2: return audio_array.T

    return audio_array

def write_array_to_mem(audio_data, subtype):
    if isinstance(audio_data, np.ndarray):
        audio_buffer = io.BytesIO()
        sf.write(audio_buffer, audio_data, 44100, subtype=subtype, format="WAV")

        audio_buffer.seek(0)
        
        return audio_buffer
    else: return audio_data

def spectrogram_to_image(spec, mode="magnitude"):
    if mode == "magnitude":
        y = np.abs(spec) if np.iscomplexobj(spec) else spec
        y = np.log10(y**2 + 1e-8)
    elif mode == "phase":
        y = np.angle(spec) if np.iscomplexobj(spec) else spec

    y -= y.min()
    y *= 255 / y.max()
    img = np.uint8(y)

    if y.ndim == 3:
        img = img.transpose(1, 2, 0)
        img = np.concatenate([np.max(img, axis=2, keepdims=True), img], axis=2)

    return img

def reduce_vocal_aggressively(X, y, softmask):
    v = X - y

    y_mag_tmp = np.abs(y)
    v_mag_tmp = np.abs(v)

    v_mask = v_mag_tmp > y_mag_tmp
    y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)

    return y_mag * np.exp(1.0j * np.angle(y))

def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
    mask = y_mask

    try:
        if min_range < fade_size * 2: raise ValueError("min_range >= fade_size * 2")

        idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
        start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
        end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
        artifact_idx = np.where(end_idx - start_idx > min_range)[0]
        weight = np.zeros_like(y_mask)

        if len(artifact_idx) > 0:
            start_idx = start_idx[artifact_idx]
            end_idx = end_idx[artifact_idx]
            old_e = None

            for s, e in zip(start_idx, end_idx):
                if old_e is not None and s - old_e < fade_size: s = old_e - fade_size * 2

                if s != 0: weight[:, :, s : s + fade_size] = np.linspace(0, 1, fade_size)
                else: s -= fade_size

                if e != y_mask.shape[2]: weight[:, :, e - fade_size : e] = np.linspace(1, 0, fade_size)
                else: e += fade_size

                weight[:, :, s + fade_size : e - fade_size] = 1
                old_e = e

        v_mask = 1 - y_mask
        y_mask += weight * v_mask
        mask = y_mask
    except Exception as e:
        error_name = f"{type(e).__name__}"
        traceback_text = "".join(traceback.format_tb(e.__traceback__))
        message = f'{error_name}: "{e}"\n{traceback_text}"'
        print(translations["not_success"], message)

    return mask

def align_wave_head_and_tail(a, b):
    l = min([a[0].size, b[0].size])

    return a[:l, :l], b[:l, :l]

def convert_channels(spec, mp, band):
    cc = mp.param["band"][band].get("convert_channels")

    if "mid_side_c" == cc:
        spec_left = np.add(spec[0], spec[1] * 0.25)
        spec_right = np.subtract(spec[1], spec[0] * 0.25)
    elif "mid_side" == cc:
        spec_left = np.add(spec[0], spec[1]) / 2
        spec_right = np.subtract(spec[0], spec[1])
    elif "stereo_n" == cc:
        spec_left = np.add(spec[0], spec[1] * 0.25) / 0.9375
        spec_right = np.add(spec[1], spec[0] * 0.25) / 0.9375
    else: return spec

    return np.asfortranarray([spec_left, spec_right])

def combine_spectrograms(specs, mp, is_v51_model=False):
    l = min([specs[i].shape[2] for i in specs])
    spec_c = np.zeros(shape=(2, mp.param["bins"] + 1, l), dtype=np.complex64)
    offset = 0
    bands_n = len(mp.param["band"])

    for d in range(1, bands_n + 1):
        h = mp.param["band"][d]["crop_stop"] - mp.param["band"][d]["crop_start"]
        spec_c[:, offset : offset + h, :l] = specs[d][:, mp.param["band"][d]["crop_start"] : mp.param["band"][d]["crop_stop"], :l]
        offset += h

    if offset > mp.param["bins"]: raise ValueError("Quá nhiều thùng")

    if mp.param["pre_filter_start"] > 0:
        if is_v51_model: spec_c *= get_lp_filter_mask(spec_c.shape[1], mp.param["pre_filter_start"], mp.param["pre_filter_stop"])
        else:
            if bands_n == 1: spec_c = fft_lp_filter(spec_c, mp.param["pre_filter_start"], mp.param["pre_filter_stop"])
            else:
                gp = 1

                for b in range(mp.param["pre_filter_start"] + 1, mp.param["pre_filter_stop"]):
                    g = math.pow(10, -(b - mp.param["pre_filter_start"]) * (3.5 - gp) / 20.0)
                    gp = g
                    spec_c[:, b, :] *= g

    return np.asfortranarray(spec_c)

def wave_to_spectrogram(wave, hop_length, n_fft, mp, band, is_v51_model=False):
    if wave.ndim == 1: wave = np.asfortranarray([wave, wave])

    if not is_v51_model:
        if mp.param["reverse"]:
            wave_left = np.flip(np.asfortranarray(wave[0]))
            wave_right = np.flip(np.asfortranarray(wave[1]))
        elif mp.param["mid_side"]:
            wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
            wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
        elif mp.param["mid_side_b2"]:
            wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
            wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
        else:
            wave_left = np.asfortranarray(wave[0])
            wave_right = np.asfortranarray(wave[1])
    else:
        wave_left = np.asfortranarray(wave[0])
        wave_right = np.asfortranarray(wave[1])

    spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
    spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)

    spec = np.asfortranarray([spec_left, spec_right])

    if is_v51_model: spec = convert_channels(spec, mp, band)

    return spec

def spectrogram_to_wave(spec, hop_length=1024, mp={}, band=0, is_v51_model=True):
    spec_left = np.asfortranarray(spec[0])
    spec_right = np.asfortranarray(spec[1])

    wave_left = librosa.istft(spec_left, hop_length=hop_length)
    wave_right = librosa.istft(spec_right, hop_length=hop_length)

    if is_v51_model:
        cc = mp.param["band"][band].get("convert_channels")

        if "mid_side_c" == cc: return np.asfortranarray([np.subtract(wave_left / 1.0625, wave_right / 4.25), np.add(wave_right / 1.0625, wave_left / 4.25)])
        elif "mid_side" == cc: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
        elif "stereo_n" == cc: return np.asfortranarray([np.subtract(wave_left, wave_right * 0.25), np.subtract(wave_right, wave_left * 0.25)])
    else:
        if mp.param["reverse"]: return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
        elif mp.param["mid_side"]: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
        elif mp.param["mid_side_b2"]: return np.asfortranarray([np.add(wave_right / 1.25, 0.4 * wave_left), np.subtract(wave_left / 1.25, 0.4 * wave_right)])

    return np.asfortranarray([wave_left, wave_right])

def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None, is_v51_model=False):
    bands_n = len(mp.param["band"])
    offset = 0

    for d in range(1, bands_n + 1):
        bp = mp.param["band"][d]
        spec_s = np.zeros(shape=(2, bp["n_fft"] // 2 + 1, spec_m.shape[2]), dtype=complex)
        h = bp["crop_stop"] - bp["crop_start"]
        spec_s[:, bp["crop_start"] : bp["crop_stop"], :] = spec_m[:, offset : offset + h, :]

        offset += h

        if d == bands_n:
            if extra_bins_h:  
                max_bin = bp["n_fft"] // 2
                spec_s[:, max_bin - extra_bins_h : max_bin, :] = extra_bins[:, :extra_bins_h, :]

            if bp["hpf_start"] > 0:
                if is_v51_model: spec_s *= get_hp_filter_mask(spec_s.shape[1], bp["hpf_start"], bp["hpf_stop"] - 1)
                else: spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)

            if bands_n == 1: wave = spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model)
            else: wave = np.add(wave, spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model))
        else:
            sr = mp.param["band"][d + 1]["sr"]
            if d == 1: 
                if is_v51_model: spec_s *= get_lp_filter_mask(spec_s.shape[1], bp["lpf_start"], bp["lpf_stop"])
                else: spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])

                try:
                    wave = librosa.resample(spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model), orig_sr=bp["sr"], target_sr=sr, res_type=wav_resolution)
                except ValueError as e:
                    print(f"{translations['resample_error']}: {e}")
                    print(f"{translations['shapes']} Spec_s: {spec_s.shape}, SR: {sr}, {translations['wav_resolution']}: {wav_resolution}")
            else:  
                if is_v51_model:
                    spec_s *= get_hp_filter_mask(spec_s.shape[1], bp["hpf_start"], bp["hpf_stop"] - 1)
                    spec_s *= get_lp_filter_mask(spec_s.shape[1], bp["lpf_start"], bp["lpf_stop"])
                else:
                    spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
                    spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])

                wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model))

                try:
                    wave = librosa.resample(wave2, orig_sr=bp["sr"], target_sr=sr, res_type=wav_resolution)
                except ValueError as e:
                    print(f"{translations['resample_error']}: {e}")
                    print(f"{translations['shapes']} Spec_s: {spec_s.shape}, SR: {sr}, {translations['wav_resolution']}: {wav_resolution}")

    return wave

def get_lp_filter_mask(n_bins, bin_start, bin_stop):
    return np.concatenate([np.ones((bin_start - 1, 1)), np.linspace(1, 0, bin_stop - bin_start + 1)[:, None], np.zeros((n_bins - bin_stop, 1))], axis=0)

def get_hp_filter_mask(n_bins, bin_start, bin_stop):
    return np.concatenate([np.zeros((bin_stop + 1, 1)), np.linspace(0, 1, 1 + bin_start - bin_stop)[:, None], np.ones((n_bins - bin_start - 2, 1))], axis=0)

def fft_lp_filter(spec, bin_start, bin_stop):
    g = 1.0

    for b in range(bin_start, bin_stop):
        g -= 1 / (bin_stop - bin_start)
        spec[:, b, :] = g * spec[:, b, :]

    spec[:, bin_stop:, :] *= 0

    return spec

def fft_hp_filter(spec, bin_start, bin_stop):
    g = 1.0

    for b in range(bin_start, bin_stop, -1):
        g -= 1 / (bin_start - bin_stop)
        spec[:, b, :] = g * spec[:, b, :]

    spec[:, 0 : bin_stop + 1, :] *= 0

    return spec

def spectrogram_to_wave_old(spec, hop_length=1024):
    if spec.ndim == 2: wave = librosa.istft(spec, hop_length=hop_length)
    elif spec.ndim == 3:
        spec_left = np.asfortranarray(spec[0])
        spec_right = np.asfortranarray(spec[1])

        wave_left = librosa.istft(spec_left, hop_length=hop_length)
        wave_right = librosa.istft(spec_right, hop_length=hop_length)
        wave = np.asfortranarray([wave_left, wave_right])

    return wave

def wave_to_spectrogram_old(wave, hop_length, n_fft):
    wave_left = np.asfortranarray(wave[0])
    wave_right = np.asfortranarray(wave[1])
    spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
    spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)

    return np.asfortranarray([spec_left, spec_right])

def mirroring(a, spec_m, input_high_end, mp):
    if "mirroring" == a:
        mirror = np.flip(np.abs(spec_m[:, mp.param["pre_filter_start"] - 10 - input_high_end.shape[1] : mp.param["pre_filter_start"] - 10, :]), 1)
        mirror = mirror * np.exp(1.0j * np.angle(input_high_end))

        return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)

    if "mirroring2" == a:
        mirror = np.flip(np.abs(spec_m[:, mp.param["pre_filter_start"] - 10 - input_high_end.shape[1] : mp.param["pre_filter_start"] - 10, :]), 1)
        mi = np.multiply(mirror, input_high_end * 1.7)

        return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)

def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
    aggr = aggressiveness["value"] * 2

    if aggr != 0:
        if is_non_accom_stem:
            aggr = 1 - aggr

        if np.any(aggr > 10) or np.any(aggr < -10): print(f"{translations['warnings']}: {aggr}")

        aggr = [aggr, aggr]

        if aggressiveness["aggr_correction"] is not None:
            aggr[0] += aggressiveness["aggr_correction"]["left"]
            aggr[1] += aggressiveness["aggr_correction"]["right"]

        for ch in range(2):
            mask[ch, : aggressiveness["split_bin"]] = np.power(mask[ch, : aggressiveness["split_bin"]], 1 + aggr[ch] / 3)
            mask[ch, aggressiveness["split_bin"] :] = np.power(mask[ch, aggressiveness["split_bin"] :], 1 + aggr[ch])

    return mask

def stft(wave, nfft, hl):
    wave_left = np.asfortranarray(wave[0])
    wave_right = np.asfortranarray(wave[1])
    spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl)
    spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl)
    spec = np.asfortranarray([spec_left, spec_right])

    return spec

def istft(spec, hl):
    spec_left = np.asfortranarray(spec[0])
    spec_right = np.asfortranarray(spec[1])
    wave_left = librosa.istft(spec_left, hop_length=hl)
    wave_right = librosa.istft(spec_right, hop_length=hl)
    wave = np.asfortranarray([wave_left, wave_right])

    return wave

def spec_effects(wave, algorithm="Default", value=None):
    if np.isnan(wave).any() or np.isinf(wave).any(): print(f"{translations['warnings_2']}: {wave.shape}")

    spec = [stft(wave[0], 2048, 1024), stft(wave[1], 2048, 1024)]

    if algorithm == "Min_Mag":
        v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
        wave = istft(v_spec_m, 1024)
    elif algorithm == "Max_Mag":
        v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
        wave = istft(v_spec_m, 1024)
    elif algorithm == "Default": wave = (wave[1] * value) + (wave[0] * (1 - value))
    elif algorithm == "Invert_p":
        X_mag = np.abs(spec[0])
        y_mag = np.abs(spec[1])

        max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
        v_spec = spec[1] - max_mag * np.exp(1.0j * np.angle(spec[0]))

        wave = istft(v_spec, 1024)

    return wave

def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
    wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
    if wave.ndim == 1: wave = np.asfortranarray([wave, wave])

    return wave

def wave_to_spectrogram_no_mp(wave):

    spec = librosa.stft(wave, n_fft=2048, hop_length=1024)

    if spec.ndim == 1: spec = np.asfortranarray([spec, spec])

    return spec

def invert_audio(specs, invert_p=True):

    ln = min([specs[0].shape[2], specs[1].shape[2]])
    specs[0] = specs[0][:, :, :ln]
    specs[1] = specs[1][:, :, :ln]

    if invert_p:
        X_mag = np.abs(specs[0])
        y_mag = np.abs(specs[1])
        max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
        v_spec = specs[1] - max_mag * np.exp(1.0j * np.angle(specs[0]))
    else:
        specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
        v_spec = specs[0] - specs[1]

    return v_spec

def invert_stem(mixture, stem):
    mixture = wave_to_spectrogram_no_mp(mixture)
    stem = wave_to_spectrogram_no_mp(stem)
    output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))

    return -output.T

def ensembling(a, inputs, is_wavs=False):
    for i in range(1, len(inputs)):
        if i == 1: input = inputs[0]

        if is_wavs:
            ln = min([input.shape[1], inputs[i].shape[1]])
            input = input[:, :ln]
            inputs[i] = inputs[i][:, :ln]
        else:
            ln = min([input.shape[2], inputs[i].shape[2]])
            input = input[:, :, :ln]
            inputs[i] = inputs[i][:, :, :ln]

        if MIN_SPEC == a: input = np.where(np.abs(inputs[i]) <= np.abs(input), inputs[i], input)
        if MAX_SPEC == a: input = np.where(np.abs(inputs[i]) >= np.abs(input), inputs[i], input)

    return input

def ensemble_for_align(waves):

    specs = []

    for wav in waves:
        spec = wave_to_spectrogram_no_mp(wav.T)
        specs.append(spec)

    wav_aligned = spectrogram_to_wave_no_mp(ensembling(MIN_SPEC, specs)).T
    wav_aligned = match_array_shapes(wav_aligned, waves[1], is_swap=True)

    return wav_aligned

def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path, is_wave=False, is_array=False):
    wavs_ = []

    if algorithm == AVERAGE:
        output = average_audio(audio_input)
        samplerate = 44100
    else:
        specs = []

        for i in range(len(audio_input)):
            wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
            wavs_.append(wave)
            spec = wave if is_wave else wave_to_spectrogram_no_mp(wave)
            specs.append(spec)

        wave_shapes = [w.shape[1] for w in wavs_]
        target_shape = wavs_[wave_shapes.index(max(wave_shapes))]

        output = ensembling(algorithm, specs, is_wavs=True) if is_wave else spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
        output = to_shape(output, target_shape.shape)

    sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)

def to_shape(x, target_shape):
    padding_list = []

    for x_dim, target_dim in zip(x.shape, target_shape):
        pad_value = target_dim - x_dim
        pad_tuple = (0, pad_value)
        padding_list.append(pad_tuple)

    return np.pad(x, tuple(padding_list), mode="constant")

def to_shape_minimize(x: np.ndarray, target_shape):
    padding_list = []

    for x_dim, target_dim in zip(x.shape, target_shape):
        pad_value = target_dim - x_dim
        pad_tuple = (0, pad_value)
        padding_list.append(pad_tuple)

    return np.pad(x, tuple(padding_list), mode="constant")

def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024):
    if len(audio.shape) == 2:
        channel = np.argmax(np.sum(np.abs(audio), axis=1))
        audio = audio[channel]

    for i in range(0, len(audio), frame_length):
        if np.max(np.abs(audio[i : i + frame_length])) > silence_threshold: return (i / sr) * 1000

    return (len(audio) / sr) * 1000

def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024):
    def find_silence_end(audio):
        if len(audio.shape) == 2:
            channel = np.argmax(np.sum(np.abs(audio), axis=1))
            audio_mono = audio[channel]
        else: audio_mono = audio

        for i in range(0, len(audio_mono), frame_length):
            if np.max(np.abs(audio_mono[i : i + frame_length])) > silence_threshold: return i

        return len(audio_mono)

    ref_silence_end = find_silence_end(reference_audio)
    target_silence_end = find_silence_end(target_audio)
    silence_difference = ref_silence_end - target_silence_end

    try:
        ref_silence_end_p = (ref_silence_end / 44100) * 1000
        target_silence_end_p = (target_silence_end / 44100) * 1000
        silence_difference_p = ref_silence_end_p - target_silence_end_p

        print("im lặng khác biệt: ", silence_difference_p)
    except Exception as e:
        pass

    if silence_difference > 0:  
        silence_to_add = np.zeros((target_audio.shape[0], silence_difference))if len(target_audio.shape) == 2 else np.zeros(silence_difference)

        return np.hstack((silence_to_add, target_audio))
    elif silence_difference < 0: 
        if len(target_audio.shape) == 2: return target_audio[:, -silence_difference:]
        else: return target_audio[-silence_difference:]
    else: return target_audio

def match_array_shapes(array_1: np.ndarray, array_2: np.ndarray, is_swap=False):

    if is_swap: array_1, array_2 = array_1.T, array_2.T

    if array_1.shape[1] > array_2.shape[1]: array_1 = array_1[:, : array_2.shape[1]]
    elif array_1.shape[1] < array_2.shape[1]:
        padding = array_2.shape[1] - array_1.shape[1]
        array_1 = np.pad(array_1, ((0, 0), (0, padding)), "constant", constant_values=0)

    if is_swap: array_1, array_2 = array_1.T, array_2.T

    return array_1

def match_mono_array_shapes(array_1: np.ndarray, array_2: np.ndarray):
    if len(array_1) > len(array_2): array_1 = array_1[: len(array_2)]
    elif len(array_1) < len(array_2):
        padding = len(array_2) - len(array_1)
        array_1 = np.pad(array_1, (0, padding), "constant", constant_values=0)

    return array_1

def change_pitch_semitones(y, sr, semitone_shift):
    factor = 2 ** (semitone_shift / 12) 
    y_pitch_tuned = []

    for y_channel in y:
        y_pitch_tuned.append(librosa.resample(y_channel, orig_sr=sr, target_sr=sr * factor, res_type=wav_resolution_float_resampling))

    y_pitch_tuned = np.array(y_pitch_tuned)
    new_sr = sr * factor

    return y_pitch_tuned, new_sr

def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False, is_time_correction=True):
    wav, sr = librosa.load(audio_file, sr=44100, mono=False)

    if wav.ndim == 1: wav = np.asfortranarray([wav, wav])

    if not is_time_correction: wav_mix = change_pitch_semitones(wav, 44100, semitone_shift=-rate)[0]
    else:
        if is_pitch:
            wav_1 = pitch_shift(wav[0], sr, rate, rbargs=None)
            wav_2 = pitch_shift(wav[1], sr, rate, rbargs=None)
        else:
            wav_1 = time_stretch(wav[0], sr, rate, rbargs=None)
            wav_2 = time_stretch(wav[1], sr, rate, rbargs=None)

        if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)
        if wav_1.shape < wav_2.shape: wav_1 = to_shape(wav_1, wav_2.shape)

        wav_mix = np.asfortranarray([wav_1, wav_2])

    sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
    save_format(export_path)


def average_audio(audio):
    waves = []
    wave_shapes = []
    final_waves = []

    for i in range(len(audio)):
        wave = librosa.load(audio[i], sr=44100, mono=False)
        waves.append(wave[0])
        wave_shapes.append(wave[0].shape[1])

    wave_shapes_index = wave_shapes.index(max(wave_shapes))
    target_shape = waves[wave_shapes_index]

    waves.pop(wave_shapes_index)
    final_waves.append(target_shape)

    for n_array in waves:
        wav_target = to_shape(n_array, target_shape.shape)
        final_waves.append(wav_target)

    waves = sum(final_waves)
    waves = waves / len(audio)

    return waves

def average_dual_sources(wav_1, wav_2, value):
    if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)
    if wav_1.shape < wav_2.shape: wav_1 = to_shape(wav_1, wav_2.shape)

    wave = (wav_1 * value) + (wav_2 * (1 - value))

    return wave

def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
    if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)

    if wav_1.shape < wav_2.shape:
        ln = min([wav_1.shape[1], wav_2.shape[1]])
        wav_2 = wav_2[:, :ln]

    ln = min([wav_1.shape[1], wav_2.shape[1]])
    wav_1 = wav_1[:, :ln]
    wav_2 = wav_2[:, :ln]

    return wav_2

def reshape_sources_ref(wav_1_shape, wav_2: np.ndarray):
    if wav_1_shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1_shape)

    return wav_2

def combine_arrarys(audio_sources, is_swap=False):
    source = np.zeros_like(max(audio_sources, key=np.size))

    for v in audio_sources:
        v = match_array_shapes(v, source, is_swap=is_swap)
        source += v

    return source

def combine_audio(paths: list, audio_file_base=None, wav_type_set="FLOAT", save_format=None):
    source = combine_arrarys([load_audio(i) for i in paths])
    save_path = f"{audio_file_base}_combined.wav"

    sf.write(save_path, source.T, 44100, subtype=wav_type_set)
    save_format(save_path)

def reduce_mix_bv(inst_source, voc_source, reduction_rate=0.9):
    inst_source = inst_source * (1 - reduction_rate)
    mix_reduced = combine_arrarys([inst_source, voc_source], is_swap=True)

    return mix_reduced

def organize_inputs(inputs):
    input_list = {"target": None, "reference": None, "reverb": None, "inst": None}

    for i in inputs:
        if i.endswith("_(Vocals).wav"): input_list["reference"] = i
        elif "_RVC_" in i: input_list["target"] = i
        elif i.endswith("reverbed_stem.wav"): input_list["reverb"] = i
        elif i.endswith("_(Instrumental).wav"): input_list["inst"] = i

    return input_list

def check_if_phase_inverted(wav1, wav2, is_mono=False):
    if not is_mono:
        wav1 = np.mean(wav1, axis=0)
        wav2 = np.mean(wav2, axis=0)

    correlation = np.corrcoef(wav1[:1000], wav2[:1000])

    return correlation[0, 1] < 0

def align_audio(file1, file2, file2_aligned, file_subtracted, wav_type_set, is_save_aligned, command_Text, save_format, align_window: list, align_intro_val: list, db_analysis: tuple, set_progress_bar, phase_option, phase_shifts, is_match_silence, is_spec_match):
    global progress_value
    progress_value = 0
    is_mono = False

    def get_diff(a, b):
        corr = np.correlate(a, b, "full")
        diff = corr.argmax() - (b.shape[0] - 1)

        return diff

    def progress_bar(length):
        global progress_value

        progress_value += 1

        if (0.90 / length * progress_value) >= 0.9: length = progress_value + 1

        set_progress_bar(0.1, (0.9 / length * progress_value))

    if file1.endswith(".mp3") and is_macos:
        length1 = rerun_mp3(file1)
        wav1, sr1 = librosa.load(file1, duration=length1, sr=44100, mono=False)
    else: wav1, sr1 = librosa.load(file1, sr=44100, mono=False)

    if file2.endswith(".mp3") and is_macos:
        length2 = rerun_mp3(file2)
        wav2, sr2 = librosa.load(file2, duration=length2, sr=44100, mono=False)
    else: wav2, sr2 = librosa.load(file2, sr=44100, mono=False)

    if wav1.ndim == 1 and wav2.ndim == 1: is_mono = True
    elif wav1.ndim == 1: wav1 = np.asfortranarray([wav1, wav1])
    elif wav2.ndim == 1: wav2 = np.asfortranarray([wav2, wav2])

    if phase_option == AUTO_PHASE:
        if check_if_phase_inverted(wav1, wav2, is_mono=is_mono): wav2 = -wav2
    elif phase_option == POSITIVE_PHASE: wav2 = +wav2
    elif phase_option == NEGATIVE_PHASE: wav2 = -wav2

    if is_match_silence: wav2 = adjust_leading_silence(wav2, wav1)

    wav1_length = int(librosa.get_duration(y=wav1, sr=44100))
    wav2_length = int(librosa.get_duration(y=wav2, sr=44100))

    if not is_mono:
        wav1 = wav1.transpose()
        wav2 = wav2.transpose()

    wav2_org = wav2.copy()

    command_Text(translations["process_file"])
    seconds_length = min(wav1_length, wav2_length)

    wav2_aligned_sources = []

    for sec_len in align_intro_val:
        sec_seg = 1 if sec_len == 1 else int(seconds_length // sec_len)
        index = sr1 * sec_seg 

        if is_mono:
            samp1, samp2 = wav1[index : index + sr1], wav2[index : index + sr1]
            diff = get_diff(samp1, samp2)
        else:
            index = sr1 * sec_seg  
            samp1, samp2 = wav1[index : index + sr1, 0], wav2[index : index + sr1, 0]
            samp1_r, samp2_r = wav1[index : index + sr1, 1], wav2[index : index + sr1, 1]
            diff, diff_r = get_diff(samp1, samp2), get_diff(samp1_r, samp2_r)

        if diff > 0:
            zeros_to_append = np.zeros(diff) if is_mono else np.zeros((diff, 2))
            wav2_aligned = np.append(zeros_to_append, wav2_org, axis=0)
        elif diff < 0: wav2_aligned = wav2_org[-diff:]
        else: wav2_aligned = wav2_org

        if not any(np.array_equal(wav2_aligned, source) for source in wav2_aligned_sources): wav2_aligned_sources.append(wav2_aligned)

    unique_sources = len(wav2_aligned_sources)

    sub_mapper_big_mapper = {}

    for s in wav2_aligned_sources:
        wav2_aligned = match_mono_array_shapes(s, wav1) if is_mono else match_array_shapes(s, wav1, is_swap=True)

        if align_window:
            wav_sub = time_correction(wav1, wav2_aligned, seconds_length, align_window=align_window, db_analysis=db_analysis, progress_bar=progress_bar, unique_sources=unique_sources, phase_shifts=phase_shifts)
            wav_sub_size = np.abs(wav_sub).mean()

            sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size: wav_sub}}
        else:
            wav2_aligned = wav2_aligned * np.power(10, db_analysis[0] / 20)
            db_range = db_analysis[1]

            for db_adjustment in db_range:
                s_adjusted = wav2_aligned * (10 ** (db_adjustment / 20))

                wav_sub = wav1 - s_adjusted
                wav_sub_size = np.abs(wav_sub).mean()

                sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size: wav_sub}}

    sub_mapper_value_list = list(sub_mapper_big_mapper.values())

    wav_sub = ensemble_for_align(list(sub_mapper_big_mapper.values())) if is_spec_match and len(sub_mapper_value_list) >= 2 else ensemble_wav(list(sub_mapper_big_mapper.values()))

    wav_sub = np.clip(wav_sub, -1, +1)

    command_Text(translations["save_instruments"])

    if is_save_aligned or is_spec_match:
        wav1 = match_mono_array_shapes(wav1, wav_sub) if is_mono else match_array_shapes(wav1, wav_sub, is_swap=True)
        wav2_aligned = wav1 - wav_sub

        if is_spec_match:
            if wav1.ndim == 1 and wav2.ndim == 1:
                wav2_aligned = np.asfortranarray([wav2_aligned, wav2_aligned]).T
                wav1 = np.asfortranarray([wav1, wav1]).T

            wav2_aligned = ensemble_for_align([wav2_aligned, wav1])
            wav_sub = wav1 - wav2_aligned

        if is_save_aligned:
            sf.write(file2_aligned, wav2_aligned, sr1, subtype=wav_type_set)
            save_format(file2_aligned)

    sf.write(file_subtracted, wav_sub, sr1, subtype=wav_type_set)
    save_format(file_subtracted)

def phase_shift_hilbert(signal, degree):
    analytic_signal = hilbert(signal)

    return np.cos(np.radians(degree)) * analytic_signal.real - np.sin(np.radians(degree)) * analytic_signal.imag

def get_phase_shifted_tracks(track, phase_shift):
    if phase_shift == 180: return [track, -track]

    step = phase_shift
    end = 180 - (180 % step) if 180 % step == 0 else 181
    phase_range = range(step, end, step)

    flipped_list = [track, -track]

    for i in phase_range:
        flipped_list.extend([phase_shift_hilbert(track, i), phase_shift_hilbert(track, -i)])

    return flipped_list

def time_correction(mix: np.ndarray, instrumental: np.ndarray, seconds_length, align_window, db_analysis, sr=44100, progress_bar=None, unique_sources=None, phase_shifts=NONE_P):
    def align_tracks(track1, track2):
        shifted_tracks = {}

        track2 = track2 * np.power(10, db_analysis[0] / 20)
        db_range = db_analysis[1]

        track2_flipped = [track2] if phase_shifts == 190 else get_phase_shifted_tracks(track2, phase_shifts)

        for db_adjustment in db_range:
            for t in track2_flipped:
                track2_adjusted = t * (10 ** (db_adjustment / 20))
                corr = correlate(track1, track2_adjusted)
                delay = np.argmax(np.abs(corr)) - (len(track1) - 1)
                track2_shifted = np.roll(track2_adjusted, shift=delay)

                track2_shifted_sub = track1 - track2_shifted
                mean_abs_value = np.abs(track2_shifted_sub).mean()

                shifted_tracks[mean_abs_value] = track2_shifted

        return shifted_tracks[min(shifted_tracks.keys())]

    assert mix.shape == instrumental.shape, translations["assert"].format(mixshape=mix.shape, instrumentalshape=instrumental.shape)

    seconds_length = seconds_length // 2

    sub_mapper = {}

    progress_update_interval = 120
    total_iterations = 0

    if len(align_window) > 2: progress_update_interval = 320

    for secs in align_window:
        step = secs / 2
        window_size = int(sr * secs)
        step_size = int(sr * step)

        if len(mix.shape) == 1:
            total_mono = (len(range(0, len(mix) - window_size, step_size)) // progress_update_interval) * unique_sources
            total_iterations += total_mono
        else:
            total_stereo_ = len(range(0, len(mix[:, 0]) - window_size, step_size)) * 2
            total_stereo = (total_stereo_ // progress_update_interval) * unique_sources
            total_iterations += total_stereo

    for secs in align_window:
        sub = np.zeros_like(mix)
        divider = np.zeros_like(mix)
        step = secs / 2
        window_size = int(sr * secs)
        step_size = int(sr * step)
        window = np.hanning(window_size)

        if len(mix.shape) == 1:
            counter = 0

            for i in range(0, len(mix) - window_size, step_size):
                counter += 1

                if counter % progress_update_interval == 0: progress_bar(total_iterations)

                window_mix = mix[i : i + window_size] * window
                window_instrumental = instrumental[i : i + window_size] * window
                window_instrumental_aligned = align_tracks(window_mix, window_instrumental)

                sub[i : i + window_size] += window_mix - window_instrumental_aligned
                divider[i : i + window_size] += window
        else:
            counter = 0

            for ch in range(mix.shape[1]):
                for i in range(0, len(mix[:, ch]) - window_size, step_size):
                    counter += 1

                    if counter % progress_update_interval == 0: progress_bar(total_iterations)

                    window_mix = mix[i : i + window_size, ch] * window
                    window_instrumental = instrumental[i : i + window_size, ch] * window
                    window_instrumental_aligned = align_tracks(window_mix, window_instrumental)

                    sub[i : i + window_size, ch] += window_mix - window_instrumental_aligned
                    divider[i : i + window_size, ch] += window

        sub = np.where(divider > 1e-6, sub / divider, sub)
        sub_size = np.abs(sub).mean()
        sub_mapper = {**sub_mapper, **{sub_size: sub}}

    sub = ensemble_wav(list(sub_mapper.values()), split_size=12)

    return sub

def ensemble_wav(waveforms, split_size=240):
    waveform_thirds = {i: np.array_split(waveform, split_size) for i, waveform in enumerate(waveforms)}

    final_waveform = []

    for third_idx in range(split_size):
        means = [np.abs(waveform_thirds[i][third_idx]).mean() for i in range(len(waveforms))]

        min_index = np.argmin(means)

        final_waveform.append(waveform_thirds[min_index][third_idx])

    final_waveform = np.concatenate(final_waveform)

    return final_waveform

def ensemble_wav_min(waveforms):
    for i in range(1, len(waveforms)):
        if i == 1: wave = waveforms[0]

        ln = min(len(wave), len(waveforms[i]))
        wave = wave[:ln]
        waveforms[i] = waveforms[i][:ln]
        wave = np.where(np.abs(waveforms[i]) <= np.abs(wave), waveforms[i], wave)

    return wave

def align_audio_test(wav1, wav2, sr1=44100):
    def get_diff(a, b):
        corr = np.correlate(a, b, "full")
        diff = corr.argmax() - (b.shape[0] - 1)
        return diff

    wav1 = wav1.transpose()
    wav2 = wav2.transpose()
    wav2_org = wav2.copy()

    index = sr1  
    samp1 = wav1[index : index + sr1, 0] 
    samp2 = wav2[index : index + sr1, 0]
    diff = get_diff(samp1, samp2)

    if diff > 0: wav2_aligned = np.append(np.zeros((diff, 1)), wav2_org, axis=0)
    elif diff < 0: wav2_aligned = wav2_org[-diff:]
    else: wav2_aligned = wav2_org

    return wav2_aligned

def load_audio(audio_file):
    wav, sr = librosa.load(audio_file, sr=44100, mono=False)
    if wav.ndim == 1: wav = np.asfortranarray([wav, wav])

    return wav

def rerun_mp3(audio_file):
    with audioread.audio_open(audio_file) as f:
        track_length = int(f.duration)

    return track_length

def __rubberband(y, sr, **kwargs):
    assert sr > 0

    fd, infile = tempfile.mkstemp(suffix='.wav')
    os.close(fd)
    fd, outfile = tempfile.mkstemp(suffix='.wav')
    os.close(fd)

    sf.write(infile, y, sr)

    try:
        arguments = [os.path.join(BASE_PATH_RUB, 'rubberband'), '-q']

        for key, value in six.iteritems(kwargs):
            arguments.append(str(key))
            arguments.append(str(value))

        arguments.extend([infile, outfile])

        subprocess.check_call(arguments, stdout=DEVNULL, stderr=DEVNULL)

        y_out, _ = sf.read(outfile, always_2d=True)

        if y.ndim == 1: y_out = np.squeeze(y_out)
    except OSError as exc:
        six.raise_from(RuntimeError(translations["rubberband"]), exc)
    finally:
        os.unlink(infile)
        os.unlink(outfile)

    return y_out

def time_stretch(y, sr, rate, rbargs=None):
    if rate <= 0: raise ValueError(translations["rate"])

    if rate == 1.0: return y
    if rbargs is None: rbargs = dict()

    rbargs.setdefault('--tempo', rate)

    return __rubberband(y, sr, **rbargs)

def pitch_shift(y, sr, n_steps, rbargs=None):

    if n_steps == 0: return y
    if rbargs is None: rbargs = dict()

    rbargs.setdefault('--pitch', n_steps)

    return __rubberband(y, sr, **rbargs)