Spaces:
Build error
Build error
import math | |
import torch | |
import typing as tp | |
from torch import nn | |
from copy import deepcopy | |
from typing import Optional | |
from torch.nn import functional as F | |
from .states import capture_init | |
from .demucs import DConv, rescale_module | |
def spectro(x, n_fft=512, hop_length=None, pad=0): | |
*other, length = x.shape | |
x = x.reshape(-1, length) | |
device_type = x.device.type | |
is_other_gpu = not device_type in ["cuda", "cpu"] | |
if is_other_gpu: x = x.cpu() | |
z = torch.stft(x, n_fft * (1 + pad), hop_length or n_fft // 4, window=torch.hann_window(n_fft).to(x), win_length=n_fft, normalized=True, center=True, return_complex=True, pad_mode="reflect") | |
_, freqs, frame = z.shape | |
return z.view(*other, freqs, frame) | |
def ispectro(z, hop_length=None, length=None, pad=0): | |
*other, freqs, frames = z.shape | |
n_fft = 2 * freqs - 2 | |
z = z.view(-1, freqs, frames) | |
win_length = n_fft // (1 + pad) | |
device_type = z.device.type | |
is_other_gpu = not device_type in ["cuda", "cpu"] | |
if is_other_gpu: z = z.cpu() | |
x = torch.istft(z, n_fft, hop_length, window=torch.hann_window(win_length).to(z.real), win_length=win_length, normalized=True, length=length, center=True) | |
_, length = x.shape | |
return x.view(*other, length) | |
def atan2(y, x): | |
pi = 2 * torch.asin(torch.tensor(1.0)) | |
x += ((x == 0) & (y == 0)) * 1.0 | |
out = torch.atan(y / x) | |
out += ((y >= 0) & (x < 0)) * pi | |
out -= ((y < 0) & (x < 0)) * pi | |
out *= 1 - ((y > 0) & (x == 0)) * 1.0 | |
out += ((y > 0) & (x == 0)) * (pi / 2) | |
out *= 1 - ((y < 0) & (x == 0)) * 1.0 | |
out += ((y < 0) & (x == 0)) * (-pi / 2) | |
return out | |
def _norm(x: torch.Tensor) -> torch.Tensor: | |
return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2 | |
def _mul_add(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: | |
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)]) | |
if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device) | |
if out is a: | |
real_a = a[..., 0] | |
out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1]) | |
out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0]) | |
else: | |
out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1]) | |
out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0]) | |
return out | |
def _mul(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: | |
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)]) | |
if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device) | |
if out is a: | |
real_a = a[..., 0] | |
out[..., 0] = real_a * b[..., 0] - a[..., 1] * b[..., 1] | |
out[..., 1] = real_a * b[..., 1] + a[..., 1] * b[..., 0] | |
else: | |
out[..., 0] = a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1] | |
out[..., 1] = a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0] | |
return out | |
def _inv(z: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: | |
ez = _norm(z) | |
if out is None or out.shape != z.shape: out = torch.zeros_like(z) | |
out[..., 0] = z[..., 0] / ez | |
out[..., 1] = -z[..., 1] / ez | |
return out | |
def _conj(z, out: Optional[torch.Tensor] = None) -> torch.Tensor: | |
if out is None or out.shape != z.shape: out = torch.zeros_like(z) | |
out[..., 0] = z[..., 0] | |
out[..., 1] = -z[..., 1] | |
return out | |
def _invert(M: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: | |
nb_channels = M.shape[-2] | |
if out is None or out.shape != M.shape: out = torch.empty_like(M) | |
if nb_channels == 1: out = _inv(M, out) | |
elif nb_channels == 2: | |
det = _mul(M[..., 0, 0, :], M[..., 1, 1, :]) | |
det = det - _mul(M[..., 0, 1, :], M[..., 1, 0, :]) | |
invDet = _inv(det) | |
out[..., 0, 0, :] = _mul(invDet, M[..., 1, 1, :], out[..., 0, 0, :]) | |
out[..., 1, 0, :] = _mul(-invDet, M[..., 1, 0, :], out[..., 1, 0, :]) | |
out[..., 0, 1, :] = _mul(-invDet, M[..., 0, 1, :], out[..., 0, 1, :]) | |
out[..., 1, 1, :] = _mul(invDet, M[..., 0, 0, :], out[..., 1, 1, :]) | |
else: raise Exception("Torch == 2 Channels") | |
return out | |
def expectation_maximization(y: torch.Tensor, x: torch.Tensor, iterations: int = 2, eps: float = 1e-10, batch_size: int = 200): | |
(nb_frames, nb_bins, nb_channels) = x.shape[:-1] | |
nb_sources = y.shape[-1] | |
regularization = torch.cat((torch.eye(nb_channels, dtype=x.dtype, device=x.device)[..., None], torch.zeros((nb_channels, nb_channels, 1), dtype=x.dtype, device=x.device)), dim=2) | |
regularization = torch.sqrt(torch.as_tensor(eps)) * (regularization[None, None, ...].expand((-1, nb_bins, -1, -1, -1))) | |
R = [torch.zeros((nb_bins, nb_channels, nb_channels, 2), dtype=x.dtype, device=x.device) for j in range(nb_sources)] | |
weight: torch.Tensor = torch.zeros((nb_bins,), dtype=x.dtype, device=x.device) | |
v: torch.Tensor = torch.zeros((nb_frames, nb_bins, nb_sources), dtype=x.dtype, device=x.device) | |
for _ in range(iterations): | |
v = torch.mean(torch.abs(y[..., 0, :]) ** 2 + torch.abs(y[..., 1, :]) ** 2, dim=-2) | |
for j in range(nb_sources): | |
R[j] = torch.tensor(0.0, device=x.device) | |
weight = torch.tensor(eps, device=x.device) | |
pos: int = 0 | |
batch_size = batch_size if batch_size else nb_frames | |
while pos < nb_frames: | |
t = torch.arange(pos, min(nb_frames, pos + batch_size)) | |
pos = int(t[-1]) + 1 | |
R[j] = R[j] + torch.sum(_covariance(y[t, ..., j]), dim=0) | |
weight = weight + torch.sum(v[t, ..., j], dim=0) | |
R[j] = R[j] / weight[..., None, None, None] | |
weight = torch.zeros_like(weight) | |
if y.requires_grad: y = y.clone() | |
pos = 0 | |
while pos < nb_frames: | |
t = torch.arange(pos, min(nb_frames, pos + batch_size)) | |
pos = int(t[-1]) + 1 | |
y[t, ...] = torch.tensor(0.0, device=x.device, dtype=x.dtype) | |
Cxx = regularization | |
for j in range(nb_sources): | |
Cxx = Cxx + (v[t, ..., j, None, None, None] * R[j][None, ...].clone()) | |
inv_Cxx = _invert(Cxx) | |
for j in range(nb_sources): | |
gain = torch.zeros_like(inv_Cxx) | |
indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels), torch.arange(nb_channels)) | |
for index in indices: | |
gain[:, :, index[0], index[1], :] = _mul_add(R[j][None, :, index[0], index[2], :].clone(), inv_Cxx[:, :, index[2], index[1], :], gain[:, :, index[0], index[1], :]) | |
gain = gain * v[t, ..., None, None, None, j] | |
for i in range(nb_channels): | |
y[t, ..., j] = _mul_add(gain[..., i, :], x[t, ..., i, None, :], y[t, ..., j]) | |
return y, v, R | |
def wiener(targets_spectrograms: torch.Tensor, mix_stft: torch.Tensor, iterations: int = 1, softmask: bool = False, residual: bool = False, scale_factor: float = 10.0, eps: float = 1e-10): | |
if softmask: y = mix_stft[..., None] * (targets_spectrograms / (eps + torch.sum(targets_spectrograms, dim=-1, keepdim=True).to(mix_stft.dtype)))[..., None, :] | |
else: | |
angle = atan2(mix_stft[..., 1], mix_stft[..., 0])[..., None] | |
nb_sources = targets_spectrograms.shape[-1] | |
y = torch.zeros(mix_stft.shape + (nb_sources,), dtype=mix_stft.dtype, device=mix_stft.device) | |
y[..., 0, :] = targets_spectrograms * torch.cos(angle) | |
y[..., 1, :] = targets_spectrograms * torch.sin(angle) | |
if residual: y = torch.cat([y, mix_stft[..., None] - y.sum(dim=-1, keepdim=True)], dim=-1) | |
if iterations == 0: return y | |
max_abs = torch.max(torch.as_tensor(1.0, dtype=mix_stft.dtype, device=mix_stft.device), torch.sqrt(_norm(mix_stft)).max() / scale_factor) | |
mix_stft = mix_stft / max_abs | |
y = y / max_abs | |
y = expectation_maximization(y, mix_stft, iterations, eps=eps)[0] | |
y = y * max_abs | |
return y | |
def _covariance(y_j): | |
(nb_frames, nb_bins, nb_channels) = y_j.shape[:-1] | |
Cj = torch.zeros((nb_frames, nb_bins, nb_channels, nb_channels, 2), dtype=y_j.dtype, device=y_j.device) | |
indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels)) | |
for index in indices: | |
Cj[:, :, index[0], index[1], :] = _mul_add(y_j[:, :, index[0], :], _conj(y_j[:, :, index[1], :]), Cj[:, :, index[0], index[1], :]) | |
return Cj | |
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = "constant", value: float = 0.0): | |
x0 = x | |
length = x.shape[-1] | |
padding_left, padding_right = paddings | |
if mode == "reflect": | |
max_pad = max(padding_left, padding_right) | |
if length <= max_pad: | |
extra_pad = max_pad - length + 1 | |
extra_pad_right = min(padding_right, extra_pad) | |
extra_pad_left = extra_pad - extra_pad_right | |
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right) | |
x = F.pad(x, (extra_pad_left, extra_pad_right)) | |
out = F.pad(x, paddings, mode, value) | |
assert out.shape[-1] == length + padding_left + padding_right | |
assert (out[..., padding_left : padding_left + length] == x0).all() | |
return out | |
class ScaledEmbedding(nn.Module): | |
def __init__(self, num_embeddings: int, embedding_dim: int, scale: float = 10.0, smooth=False): | |
super().__init__() | |
self.embedding = nn.Embedding(num_embeddings, embedding_dim) | |
if smooth: | |
weight = torch.cumsum(self.embedding.weight.data, dim=0) | |
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None] | |
self.embedding.weight.data[:] = weight | |
self.embedding.weight.data /= scale | |
self.scale = scale | |
def weight(self): | |
return self.embedding.weight * self.scale | |
def forward(self, x): | |
return self.embedding(x) * self.scale | |
class HEncLayer(nn.Module): | |
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False, freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True, rewrite=True): | |
super().__init__() | |
norm_fn = lambda d: nn.Identity() | |
if norm: norm_fn = lambda d: nn.GroupNorm(norm_groups, d) | |
pad = kernel_size // 4 if pad else 0 | |
klass = nn.Conv1d | |
self.freq = freq | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.empty = empty | |
self.norm = norm | |
self.pad = pad | |
if freq: | |
kernel_size = [kernel_size, 1] | |
stride = [stride, 1] | |
pad = [pad, 0] | |
klass = nn.Conv2d | |
self.conv = klass(chin, chout, kernel_size, stride, pad) | |
if self.empty: return | |
self.norm1 = norm_fn(chout) | |
self.rewrite = None | |
if rewrite: | |
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context) | |
self.norm2 = norm_fn(2 * chout) | |
self.dconv = None | |
if dconv: self.dconv = DConv(chout, **dconv_kw) | |
def forward(self, x, inject=None): | |
if not self.freq and x.dim() == 4: | |
B, C, Fr, T = x.shape | |
x = x.view(B, -1, T) | |
if not self.freq: | |
le = x.shape[-1] | |
if not le % self.stride == 0: x = F.pad(x, (0, self.stride - (le % self.stride))) | |
y = self.conv(x) | |
if self.empty: return y | |
if inject is not None: | |
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape) | |
if inject.dim() == 3 and y.dim() == 4: inject = inject[:, :, None] | |
y = y + inject | |
y = F.gelu(self.norm1(y)) | |
if self.dconv: | |
if self.freq: | |
B, C, Fr, T = y.shape | |
y = y.permute(0, 2, 1, 3).reshape(-1, C, T) | |
y = self.dconv(y) | |
if self.freq: y = y.view(B, Fr, C, T).permute(0, 2, 1, 3) | |
if self.rewrite: | |
z = self.norm2(self.rewrite(y)) | |
z = F.glu(z, dim=1) | |
else: z = y | |
return z | |
class MultiWrap(nn.Module): | |
def __init__(self, layer, split_ratios): | |
super().__init__() | |
self.split_ratios = split_ratios | |
self.layers = nn.ModuleList() | |
self.conv = isinstance(layer, HEncLayer) | |
assert not layer.norm | |
assert layer.freq | |
assert layer.pad | |
if not self.conv: assert not layer.context_freq | |
for _ in range(len(split_ratios) + 1): | |
lay = deepcopy(layer) | |
if self.conv: lay.conv.padding = (0, 0) | |
else: lay.pad = False | |
for m in lay.modules(): | |
if hasattr(m, "reset_parameters"): m.reset_parameters() | |
self.layers.append(lay) | |
def forward(self, x, skip=None, length=None): | |
B, C, Fr, T = x.shape | |
ratios = list(self.split_ratios) + [1] | |
start = 0 | |
outs = [] | |
for ratio, layer in zip(ratios, self.layers): | |
if self.conv: | |
pad = layer.kernel_size // 4 | |
if ratio == 1: | |
limit = Fr | |
frames = -1 | |
else: | |
limit = int(round(Fr * ratio)) | |
le = limit - start | |
if start == 0: le += pad | |
frames = round((le - layer.kernel_size) / layer.stride + 1) | |
limit = start + (frames - 1) * layer.stride + layer.kernel_size | |
if start == 0: limit -= pad | |
assert limit - start > 0, (limit, start) | |
assert limit <= Fr, (limit, Fr) | |
y = x[:, :, start:limit, :] | |
if start == 0: y = F.pad(y, (0, 0, pad, 0)) | |
if ratio == 1: y = F.pad(y, (0, 0, 0, pad)) | |
outs.append(layer(y)) | |
start = limit - layer.kernel_size + layer.stride | |
else: | |
limit = Fr if ratio == 1 else int(round(Fr * ratio)) | |
last = layer.last | |
layer.last = True | |
y = x[:, :, start:limit] | |
s = skip[:, :, start:limit] | |
out, _ = layer(y, s, None) | |
if outs: | |
outs[-1][:, :, -layer.stride :] += out[:, :, : layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1) | |
out = out[:, :, layer.stride :] | |
if ratio == 1: out = out[:, :, : -layer.stride // 2, :] | |
if start == 0: out = out[:, :, layer.stride // 2 :, :] | |
outs.append(out) | |
layer.last = last | |
start = limit | |
out = torch.cat(outs, dim=2) | |
if not self.conv and not last: out = F.gelu(out) | |
if self.conv: return out | |
else: return out, None | |
class HDecLayer(nn.Module): | |
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False, freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True, context_freq=True, rewrite=True): | |
super().__init__() | |
norm_fn = lambda d: nn.Identity() | |
if norm: norm_fn = lambda d: nn.GroupNorm(norm_groups, d) | |
pad = kernel_size // 4 if pad else 0 | |
self.pad = pad | |
self.last = last | |
self.freq = freq | |
self.chin = chin | |
self.empty = empty | |
self.stride = stride | |
self.kernel_size = kernel_size | |
self.norm = norm | |
self.context_freq = context_freq | |
klass = nn.Conv1d | |
klass_tr = nn.ConvTranspose1d | |
if freq: | |
kernel_size = [kernel_size, 1] | |
stride = [stride, 1] | |
klass = nn.Conv2d | |
klass_tr = nn.ConvTranspose2d | |
self.conv_tr = klass_tr(chin, chout, kernel_size, stride) | |
self.norm2 = norm_fn(chout) | |
if self.empty: return | |
self.rewrite = None | |
if rewrite: | |
if context_freq: self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context) | |
else: self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1, [0, context]) | |
self.norm1 = norm_fn(2 * chin) | |
self.dconv = None | |
if dconv: self.dconv = DConv(chin, **dconv_kw) | |
def forward(self, x, skip, length): | |
if self.freq and x.dim() == 3: | |
B, C, T = x.shape | |
x = x.view(B, self.chin, -1, T) | |
if not self.empty: | |
x = x + skip | |
y = F.glu(self.norm1(self.rewrite(x)), dim=1) if self.rewrite else x | |
if self.dconv: | |
if self.freq: | |
B, C, Fr, T = y.shape | |
y = y.permute(0, 2, 1, 3).reshape(-1, C, T) | |
y = self.dconv(y) | |
if self.freq: y = y.view(B, Fr, C, T).permute(0, 2, 1, 3) | |
else: | |
y = x | |
assert skip is None | |
z = self.norm2(self.conv_tr(y)) | |
if self.freq: | |
if self.pad: z = z[..., self.pad : -self.pad, :] | |
else: | |
z = z[..., self.pad : self.pad + length] | |
assert z.shape[-1] == length, (z.shape[-1], length) | |
if not self.last: z = F.gelu(z) | |
return z, y | |
class HDemucs(nn.Module): | |
def __init__(self, sources, audio_channels=2, channels=48, channels_time=None, growth=2, nfft=4096, wiener_iters=0, end_iters=0, wiener_residual=False, cac=True, depth=6, rewrite=True, hybrid=True, hybrid_old=False, multi_freqs=None, multi_freqs_depth=2, freq_emb=0.2, emb_scale=10, emb_smooth=True, kernel_size=8, time_stride=2, stride=4, context=1, context_enc=0, norm_starts=4, norm_groups=4, dconv_mode=1, dconv_depth=2, dconv_comp=4, dconv_attn=4, dconv_lstm=4, dconv_init=1e-4, rescale=0.1, samplerate=44100, segment=4 * 10): | |
super().__init__() | |
self.cac = cac | |
self.wiener_residual = wiener_residual | |
self.audio_channels = audio_channels | |
self.sources = sources | |
self.kernel_size = kernel_size | |
self.context = context | |
self.stride = stride | |
self.depth = depth | |
self.channels = channels | |
self.samplerate = samplerate | |
self.segment = segment | |
self.nfft = nfft | |
self.hop_length = nfft // 4 | |
self.wiener_iters = wiener_iters | |
self.end_iters = end_iters | |
self.freq_emb = None | |
self.hybrid = hybrid | |
self.hybrid_old = hybrid_old | |
if hybrid_old: assert hybrid | |
if hybrid: assert wiener_iters == end_iters | |
self.encoder = nn.ModuleList() | |
self.decoder = nn.ModuleList() | |
if hybrid: | |
self.tencoder = nn.ModuleList() | |
self.tdecoder = nn.ModuleList() | |
chin = audio_channels | |
chin_z = chin | |
if self.cac: chin_z *= 2 | |
chout = channels_time or channels | |
chout_z = channels | |
freqs = nfft // 2 | |
for index in range(depth): | |
lstm = index >= dconv_lstm | |
attn = index >= dconv_attn | |
norm = index >= norm_starts | |
freq = freqs > 1 | |
stri = stride | |
ker = kernel_size | |
if not freq: | |
assert freqs == 1 | |
ker = time_stride * 2 | |
stri = time_stride | |
pad = True | |
last_freq = False | |
if freq and freqs <= kernel_size: | |
ker = freqs | |
pad = False | |
last_freq = True | |
kw = { | |
"kernel_size": ker, | |
"stride": stri, | |
"freq": freq, | |
"pad": pad, | |
"norm": norm, | |
"rewrite": rewrite, | |
"norm_groups": norm_groups, | |
"dconv_kw": {"lstm": lstm, "attn": attn, "depth": dconv_depth, "compress": dconv_comp, "init": dconv_init, "gelu": True}, | |
} | |
kwt = dict(kw) | |
kwt["freq"] = 0 | |
kwt["kernel_size"] = kernel_size | |
kwt["stride"] = stride | |
kwt["pad"] = True | |
kw_dec = dict(kw) | |
multi = False | |
if multi_freqs and index < multi_freqs_depth: | |
multi = True | |
kw_dec["context_freq"] = False | |
if last_freq: | |
chout_z = max(chout, chout_z) | |
chout = chout_z | |
enc = HEncLayer(chin_z, chout_z, dconv=dconv_mode & 1, context=context_enc, **kw) | |
if hybrid and freq: | |
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc, empty=last_freq, **kwt) | |
self.tencoder.append(tenc) | |
if multi: enc = MultiWrap(enc, multi_freqs) | |
self.encoder.append(enc) | |
if index == 0: | |
chin = self.audio_channels * len(self.sources) | |
chin_z = chin | |
if self.cac: chin_z *= 2 | |
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2, last=index == 0, context=context, **kw_dec) | |
if multi: dec = MultiWrap(dec, multi_freqs) | |
if hybrid and freq: | |
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq, last=index == 0, context=context, **kwt) | |
self.tdecoder.insert(0, tdec) | |
self.decoder.insert(0, dec) | |
chin = chout | |
chin_z = chout_z | |
chout = int(growth * chout) | |
chout_z = int(growth * chout_z) | |
if freq: | |
if freqs <= kernel_size: freqs = 1 | |
else: freqs //= stride | |
if index == 0 and freq_emb: | |
self.freq_emb = ScaledEmbedding(freqs, chin_z, smooth=emb_smooth, scale=emb_scale) | |
self.freq_emb_scale = freq_emb | |
if rescale: rescale_module(self, reference=rescale) | |
def _spec(self, x): | |
hl = self.hop_length | |
nfft = self.nfft | |
if self.hybrid: | |
assert hl == nfft // 4 | |
le = int(math.ceil(x.shape[-1] / hl)) | |
pad = hl // 2 * 3 | |
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode="reflect") if not self.hybrid_old else pad1d(x, (pad, pad + le * hl - x.shape[-1])) | |
z = spectro(x, nfft, hl)[..., :-1, :] | |
if self.hybrid: | |
assert z.shape[-1] == le + 4, (z.shape, x.shape, le) | |
z = z[..., 2 : 2 + le] | |
return z | |
def _ispec(self, z, length=None, scale=0): | |
hl = self.hop_length // (4**scale) | |
z = F.pad(z, (0, 0, 0, 1)) | |
if self.hybrid: | |
z = F.pad(z, (2, 2)) | |
pad = hl // 2 * 3 | |
le = hl * int(math.ceil(length / hl)) + 2 * pad if not self.hybrid_old else hl * int(math.ceil(length / hl)) | |
x = ispectro(z, hl, length=le) | |
x = x[..., pad : pad + length] if not self.hybrid_old else x[..., :length] | |
else: x = ispectro(z, hl, length) | |
return x | |
def _magnitude(self, z): | |
if self.cac: | |
B, C, Fr, T = z.shape | |
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3) | |
m = m.reshape(B, C * 2, Fr, T) | |
else: m = z.abs() | |
return m | |
def _mask(self, z, m): | |
niters = self.wiener_iters | |
if self.cac: | |
B, S, C, Fr, T = m.shape | |
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3) | |
out = torch.view_as_complex(out.contiguous()) | |
return out | |
if self.training: niters = self.end_iters | |
if niters < 0: | |
z = z[:, None] | |
return z / (1e-8 + z.abs()) * m | |
else: return self._wiener(m, z, niters) | |
def _wiener(self, mag_out, mix_stft, niters): | |
init = mix_stft.dtype | |
wiener_win_len = 300 | |
residual = self.wiener_residual | |
B, S, C, Fq, T = mag_out.shape | |
mag_out = mag_out.permute(0, 4, 3, 2, 1) | |
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1)) | |
outs = [] | |
for sample in range(B): | |
pos = 0 | |
out = [] | |
for pos in range(0, T, wiener_win_len): | |
frame = slice(pos, pos + wiener_win_len) | |
z_out = wiener(mag_out[sample, frame], mix_stft[sample, frame], niters, residual=residual) | |
out.append(z_out.transpose(-1, -2)) | |
outs.append(torch.cat(out, dim=0)) | |
out = torch.view_as_complex(torch.stack(outs, 0)) | |
out = out.permute(0, 4, 3, 2, 1).contiguous() | |
if residual: out = out[:, :-1] | |
assert list(out.shape) == [B, S, C, Fq, T] | |
return out.to(init) | |
def forward(self, mix): | |
x = mix | |
length = x.shape[-1] | |
z = self._spec(mix) | |
mag = self._magnitude(z).to(mix.device) | |
x = mag | |
B, C, Fq, T = x.shape | |
mean = x.mean(dim=(1, 2, 3), keepdim=True) | |
std = x.std(dim=(1, 2, 3), keepdim=True) | |
x = (x - mean) / (1e-5 + std) | |
if self.hybrid: | |
xt = mix | |
meant = xt.mean(dim=(1, 2), keepdim=True) | |
stdt = xt.std(dim=(1, 2), keepdim=True) | |
xt = (xt - meant) / (1e-5 + stdt) | |
saved = [] | |
saved_t = [] | |
lengths = [] | |
lengths_t = [] | |
for idx, encode in enumerate(self.encoder): | |
lengths.append(x.shape[-1]) | |
inject = None | |
if self.hybrid and idx < len(self.tencoder): | |
lengths_t.append(xt.shape[-1]) | |
tenc = self.tencoder[idx] | |
xt = tenc(xt) | |
if not tenc.empty: saved_t.append(xt) | |
else: inject = xt | |
x = encode(x, inject) | |
if idx == 0 and self.freq_emb is not None: | |
frs = torch.arange(x.shape[-2], device=x.device) | |
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x) | |
x = x + self.freq_emb_scale * emb | |
saved.append(x) | |
x = torch.zeros_like(x) | |
if self.hybrid: xt = torch.zeros_like(x) | |
for idx, decode in enumerate(self.decoder): | |
skip = saved.pop(-1) | |
x, pre = decode(x, skip, lengths.pop(-1)) | |
if self.hybrid: offset = self.depth - len(self.tdecoder) | |
if self.hybrid and idx >= offset: | |
tdec = self.tdecoder[idx - offset] | |
length_t = lengths_t.pop(-1) | |
if tdec.empty: | |
assert pre.shape[2] == 1, pre.shape | |
pre = pre[:, :, 0] | |
xt, _ = tdec(pre, None, length_t) | |
else: | |
skip = saved_t.pop(-1) | |
xt, _ = tdec(xt, skip, length_t) | |
assert len(saved) == 0 | |
assert len(lengths_t) == 0 | |
assert len(saved_t) == 0 | |
S = len(self.sources) | |
x = x.view(B, S, -1, Fq, T) | |
x = x * std[:, None] + mean[:, None] | |
device_type = x.device.type | |
device_load = f"{device_type}:{x.device.index}" if not device_type == "mps" else device_type | |
x_is_other_gpu = not device_type in ["cuda", "cpu"] | |
if x_is_other_gpu: x = x.cpu() | |
zout = self._mask(z, x) | |
x = self._ispec(zout, length) | |
if x_is_other_gpu: x = x.to(device_load) | |
if self.hybrid: | |
xt = xt.view(B, S, -1, length) | |
xt = xt * stdt[:, None] + meant[:, None] | |
x = xt + x | |
return x |