Spaces:
Build error
Build error
File size: 27,571 Bytes
98bb602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
import math
import torch
import typing as tp
from torch import nn
from copy import deepcopy
from typing import Optional
from torch.nn import functional as F
from .states import capture_init
from .demucs import DConv, rescale_module
def spectro(x, n_fft=512, hop_length=None, pad=0):
*other, length = x.shape
x = x.reshape(-1, length)
device_type = x.device.type
is_other_gpu = not device_type in ["cuda", "cpu"]
if is_other_gpu: x = x.cpu()
z = torch.stft(x, n_fft * (1 + pad), hop_length or n_fft // 4, window=torch.hann_window(n_fft).to(x), win_length=n_fft, normalized=True, center=True, return_complex=True, pad_mode="reflect")
_, freqs, frame = z.shape
return z.view(*other, freqs, frame)
def ispectro(z, hop_length=None, length=None, pad=0):
*other, freqs, frames = z.shape
n_fft = 2 * freqs - 2
z = z.view(-1, freqs, frames)
win_length = n_fft // (1 + pad)
device_type = z.device.type
is_other_gpu = not device_type in ["cuda", "cpu"]
if is_other_gpu: z = z.cpu()
x = torch.istft(z, n_fft, hop_length, window=torch.hann_window(win_length).to(z.real), win_length=win_length, normalized=True, length=length, center=True)
_, length = x.shape
return x.view(*other, length)
def atan2(y, x):
pi = 2 * torch.asin(torch.tensor(1.0))
x += ((x == 0) & (y == 0)) * 1.0
out = torch.atan(y / x)
out += ((y >= 0) & (x < 0)) * pi
out -= ((y < 0) & (x < 0)) * pi
out *= 1 - ((y > 0) & (x == 0)) * 1.0
out += ((y > 0) & (x == 0)) * (pi / 2)
out *= 1 - ((y < 0) & (x == 0)) * 1.0
out += ((y < 0) & (x == 0)) * (-pi / 2)
return out
def _norm(x: torch.Tensor) -> torch.Tensor:
return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2
def _mul_add(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
if out is a:
real_a = a[..., 0]
out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1])
out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0])
else:
out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1])
out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0])
return out
def _mul(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
if out is a:
real_a = a[..., 0]
out[..., 0] = real_a * b[..., 0] - a[..., 1] * b[..., 1]
out[..., 1] = real_a * b[..., 1] + a[..., 1] * b[..., 0]
else:
out[..., 0] = a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1]
out[..., 1] = a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0]
return out
def _inv(z: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
ez = _norm(z)
if out is None or out.shape != z.shape: out = torch.zeros_like(z)
out[..., 0] = z[..., 0] / ez
out[..., 1] = -z[..., 1] / ez
return out
def _conj(z, out: Optional[torch.Tensor] = None) -> torch.Tensor:
if out is None or out.shape != z.shape: out = torch.zeros_like(z)
out[..., 0] = z[..., 0]
out[..., 1] = -z[..., 1]
return out
def _invert(M: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
nb_channels = M.shape[-2]
if out is None or out.shape != M.shape: out = torch.empty_like(M)
if nb_channels == 1: out = _inv(M, out)
elif nb_channels == 2:
det = _mul(M[..., 0, 0, :], M[..., 1, 1, :])
det = det - _mul(M[..., 0, 1, :], M[..., 1, 0, :])
invDet = _inv(det)
out[..., 0, 0, :] = _mul(invDet, M[..., 1, 1, :], out[..., 0, 0, :])
out[..., 1, 0, :] = _mul(-invDet, M[..., 1, 0, :], out[..., 1, 0, :])
out[..., 0, 1, :] = _mul(-invDet, M[..., 0, 1, :], out[..., 0, 1, :])
out[..., 1, 1, :] = _mul(invDet, M[..., 0, 0, :], out[..., 1, 1, :])
else: raise Exception("Torch == 2 Channels")
return out
def expectation_maximization(y: torch.Tensor, x: torch.Tensor, iterations: int = 2, eps: float = 1e-10, batch_size: int = 200):
(nb_frames, nb_bins, nb_channels) = x.shape[:-1]
nb_sources = y.shape[-1]
regularization = torch.cat((torch.eye(nb_channels, dtype=x.dtype, device=x.device)[..., None], torch.zeros((nb_channels, nb_channels, 1), dtype=x.dtype, device=x.device)), dim=2)
regularization = torch.sqrt(torch.as_tensor(eps)) * (regularization[None, None, ...].expand((-1, nb_bins, -1, -1, -1)))
R = [torch.zeros((nb_bins, nb_channels, nb_channels, 2), dtype=x.dtype, device=x.device) for j in range(nb_sources)]
weight: torch.Tensor = torch.zeros((nb_bins,), dtype=x.dtype, device=x.device)
v: torch.Tensor = torch.zeros((nb_frames, nb_bins, nb_sources), dtype=x.dtype, device=x.device)
for _ in range(iterations):
v = torch.mean(torch.abs(y[..., 0, :]) ** 2 + torch.abs(y[..., 1, :]) ** 2, dim=-2)
for j in range(nb_sources):
R[j] = torch.tensor(0.0, device=x.device)
weight = torch.tensor(eps, device=x.device)
pos: int = 0
batch_size = batch_size if batch_size else nb_frames
while pos < nb_frames:
t = torch.arange(pos, min(nb_frames, pos + batch_size))
pos = int(t[-1]) + 1
R[j] = R[j] + torch.sum(_covariance(y[t, ..., j]), dim=0)
weight = weight + torch.sum(v[t, ..., j], dim=0)
R[j] = R[j] / weight[..., None, None, None]
weight = torch.zeros_like(weight)
if y.requires_grad: y = y.clone()
pos = 0
while pos < nb_frames:
t = torch.arange(pos, min(nb_frames, pos + batch_size))
pos = int(t[-1]) + 1
y[t, ...] = torch.tensor(0.0, device=x.device, dtype=x.dtype)
Cxx = regularization
for j in range(nb_sources):
Cxx = Cxx + (v[t, ..., j, None, None, None] * R[j][None, ...].clone())
inv_Cxx = _invert(Cxx)
for j in range(nb_sources):
gain = torch.zeros_like(inv_Cxx)
indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels), torch.arange(nb_channels))
for index in indices:
gain[:, :, index[0], index[1], :] = _mul_add(R[j][None, :, index[0], index[2], :].clone(), inv_Cxx[:, :, index[2], index[1], :], gain[:, :, index[0], index[1], :])
gain = gain * v[t, ..., None, None, None, j]
for i in range(nb_channels):
y[t, ..., j] = _mul_add(gain[..., i, :], x[t, ..., i, None, :], y[t, ..., j])
return y, v, R
def wiener(targets_spectrograms: torch.Tensor, mix_stft: torch.Tensor, iterations: int = 1, softmask: bool = False, residual: bool = False, scale_factor: float = 10.0, eps: float = 1e-10):
if softmask: y = mix_stft[..., None] * (targets_spectrograms / (eps + torch.sum(targets_spectrograms, dim=-1, keepdim=True).to(mix_stft.dtype)))[..., None, :]
else:
angle = atan2(mix_stft[..., 1], mix_stft[..., 0])[..., None]
nb_sources = targets_spectrograms.shape[-1]
y = torch.zeros(mix_stft.shape + (nb_sources,), dtype=mix_stft.dtype, device=mix_stft.device)
y[..., 0, :] = targets_spectrograms * torch.cos(angle)
y[..., 1, :] = targets_spectrograms * torch.sin(angle)
if residual: y = torch.cat([y, mix_stft[..., None] - y.sum(dim=-1, keepdim=True)], dim=-1)
if iterations == 0: return y
max_abs = torch.max(torch.as_tensor(1.0, dtype=mix_stft.dtype, device=mix_stft.device), torch.sqrt(_norm(mix_stft)).max() / scale_factor)
mix_stft = mix_stft / max_abs
y = y / max_abs
y = expectation_maximization(y, mix_stft, iterations, eps=eps)[0]
y = y * max_abs
return y
def _covariance(y_j):
(nb_frames, nb_bins, nb_channels) = y_j.shape[:-1]
Cj = torch.zeros((nb_frames, nb_bins, nb_channels, nb_channels, 2), dtype=y_j.dtype, device=y_j.device)
indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels))
for index in indices:
Cj[:, :, index[0], index[1], :] = _mul_add(y_j[:, :, index[0], :], _conj(y_j[:, :, index[1], :]), Cj[:, :, index[0], index[1], :])
return Cj
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = "constant", value: float = 0.0):
x0 = x
length = x.shape[-1]
padding_left, padding_right = paddings
if mode == "reflect":
max_pad = max(padding_left, padding_right)
if length <= max_pad:
extra_pad = max_pad - length + 1
extra_pad_right = min(padding_right, extra_pad)
extra_pad_left = extra_pad - extra_pad_right
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right)
x = F.pad(x, (extra_pad_left, extra_pad_right))
out = F.pad(x, paddings, mode, value)
assert out.shape[-1] == length + padding_left + padding_right
assert (out[..., padding_left : padding_left + length] == x0).all()
return out
class ScaledEmbedding(nn.Module):
def __init__(self, num_embeddings: int, embedding_dim: int, scale: float = 10.0, smooth=False):
super().__init__()
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
if smooth:
weight = torch.cumsum(self.embedding.weight.data, dim=0)
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None]
self.embedding.weight.data[:] = weight
self.embedding.weight.data /= scale
self.scale = scale
@property
def weight(self):
return self.embedding.weight * self.scale
def forward(self, x):
return self.embedding(x) * self.scale
class HEncLayer(nn.Module):
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False, freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True, rewrite=True):
super().__init__()
norm_fn = lambda d: nn.Identity()
if norm: norm_fn = lambda d: nn.GroupNorm(norm_groups, d)
pad = kernel_size // 4 if pad else 0
klass = nn.Conv1d
self.freq = freq
self.kernel_size = kernel_size
self.stride = stride
self.empty = empty
self.norm = norm
self.pad = pad
if freq:
kernel_size = [kernel_size, 1]
stride = [stride, 1]
pad = [pad, 0]
klass = nn.Conv2d
self.conv = klass(chin, chout, kernel_size, stride, pad)
if self.empty: return
self.norm1 = norm_fn(chout)
self.rewrite = None
if rewrite:
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context)
self.norm2 = norm_fn(2 * chout)
self.dconv = None
if dconv: self.dconv = DConv(chout, **dconv_kw)
def forward(self, x, inject=None):
if not self.freq and x.dim() == 4:
B, C, Fr, T = x.shape
x = x.view(B, -1, T)
if not self.freq:
le = x.shape[-1]
if not le % self.stride == 0: x = F.pad(x, (0, self.stride - (le % self.stride)))
y = self.conv(x)
if self.empty: return y
if inject is not None:
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape)
if inject.dim() == 3 and y.dim() == 4: inject = inject[:, :, None]
y = y + inject
y = F.gelu(self.norm1(y))
if self.dconv:
if self.freq:
B, C, Fr, T = y.shape
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
y = self.dconv(y)
if self.freq: y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
if self.rewrite:
z = self.norm2(self.rewrite(y))
z = F.glu(z, dim=1)
else: z = y
return z
class MultiWrap(nn.Module):
def __init__(self, layer, split_ratios):
super().__init__()
self.split_ratios = split_ratios
self.layers = nn.ModuleList()
self.conv = isinstance(layer, HEncLayer)
assert not layer.norm
assert layer.freq
assert layer.pad
if not self.conv: assert not layer.context_freq
for _ in range(len(split_ratios) + 1):
lay = deepcopy(layer)
if self.conv: lay.conv.padding = (0, 0)
else: lay.pad = False
for m in lay.modules():
if hasattr(m, "reset_parameters"): m.reset_parameters()
self.layers.append(lay)
def forward(self, x, skip=None, length=None):
B, C, Fr, T = x.shape
ratios = list(self.split_ratios) + [1]
start = 0
outs = []
for ratio, layer in zip(ratios, self.layers):
if self.conv:
pad = layer.kernel_size // 4
if ratio == 1:
limit = Fr
frames = -1
else:
limit = int(round(Fr * ratio))
le = limit - start
if start == 0: le += pad
frames = round((le - layer.kernel_size) / layer.stride + 1)
limit = start + (frames - 1) * layer.stride + layer.kernel_size
if start == 0: limit -= pad
assert limit - start > 0, (limit, start)
assert limit <= Fr, (limit, Fr)
y = x[:, :, start:limit, :]
if start == 0: y = F.pad(y, (0, 0, pad, 0))
if ratio == 1: y = F.pad(y, (0, 0, 0, pad))
outs.append(layer(y))
start = limit - layer.kernel_size + layer.stride
else:
limit = Fr if ratio == 1 else int(round(Fr * ratio))
last = layer.last
layer.last = True
y = x[:, :, start:limit]
s = skip[:, :, start:limit]
out, _ = layer(y, s, None)
if outs:
outs[-1][:, :, -layer.stride :] += out[:, :, : layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1)
out = out[:, :, layer.stride :]
if ratio == 1: out = out[:, :, : -layer.stride // 2, :]
if start == 0: out = out[:, :, layer.stride // 2 :, :]
outs.append(out)
layer.last = last
start = limit
out = torch.cat(outs, dim=2)
if not self.conv and not last: out = F.gelu(out)
if self.conv: return out
else: return out, None
class HDecLayer(nn.Module):
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False, freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True, context_freq=True, rewrite=True):
super().__init__()
norm_fn = lambda d: nn.Identity()
if norm: norm_fn = lambda d: nn.GroupNorm(norm_groups, d)
pad = kernel_size // 4 if pad else 0
self.pad = pad
self.last = last
self.freq = freq
self.chin = chin
self.empty = empty
self.stride = stride
self.kernel_size = kernel_size
self.norm = norm
self.context_freq = context_freq
klass = nn.Conv1d
klass_tr = nn.ConvTranspose1d
if freq:
kernel_size = [kernel_size, 1]
stride = [stride, 1]
klass = nn.Conv2d
klass_tr = nn.ConvTranspose2d
self.conv_tr = klass_tr(chin, chout, kernel_size, stride)
self.norm2 = norm_fn(chout)
if self.empty: return
self.rewrite = None
if rewrite:
if context_freq: self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context)
else: self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1, [0, context])
self.norm1 = norm_fn(2 * chin)
self.dconv = None
if dconv: self.dconv = DConv(chin, **dconv_kw)
def forward(self, x, skip, length):
if self.freq and x.dim() == 3:
B, C, T = x.shape
x = x.view(B, self.chin, -1, T)
if not self.empty:
x = x + skip
y = F.glu(self.norm1(self.rewrite(x)), dim=1) if self.rewrite else x
if self.dconv:
if self.freq:
B, C, Fr, T = y.shape
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
y = self.dconv(y)
if self.freq: y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
else:
y = x
assert skip is None
z = self.norm2(self.conv_tr(y))
if self.freq:
if self.pad: z = z[..., self.pad : -self.pad, :]
else:
z = z[..., self.pad : self.pad + length]
assert z.shape[-1] == length, (z.shape[-1], length)
if not self.last: z = F.gelu(z)
return z, y
class HDemucs(nn.Module):
@capture_init
def __init__(self, sources, audio_channels=2, channels=48, channels_time=None, growth=2, nfft=4096, wiener_iters=0, end_iters=0, wiener_residual=False, cac=True, depth=6, rewrite=True, hybrid=True, hybrid_old=False, multi_freqs=None, multi_freqs_depth=2, freq_emb=0.2, emb_scale=10, emb_smooth=True, kernel_size=8, time_stride=2, stride=4, context=1, context_enc=0, norm_starts=4, norm_groups=4, dconv_mode=1, dconv_depth=2, dconv_comp=4, dconv_attn=4, dconv_lstm=4, dconv_init=1e-4, rescale=0.1, samplerate=44100, segment=4 * 10):
super().__init__()
self.cac = cac
self.wiener_residual = wiener_residual
self.audio_channels = audio_channels
self.sources = sources
self.kernel_size = kernel_size
self.context = context
self.stride = stride
self.depth = depth
self.channels = channels
self.samplerate = samplerate
self.segment = segment
self.nfft = nfft
self.hop_length = nfft // 4
self.wiener_iters = wiener_iters
self.end_iters = end_iters
self.freq_emb = None
self.hybrid = hybrid
self.hybrid_old = hybrid_old
if hybrid_old: assert hybrid
if hybrid: assert wiener_iters == end_iters
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
if hybrid:
self.tencoder = nn.ModuleList()
self.tdecoder = nn.ModuleList()
chin = audio_channels
chin_z = chin
if self.cac: chin_z *= 2
chout = channels_time or channels
chout_z = channels
freqs = nfft // 2
for index in range(depth):
lstm = index >= dconv_lstm
attn = index >= dconv_attn
norm = index >= norm_starts
freq = freqs > 1
stri = stride
ker = kernel_size
if not freq:
assert freqs == 1
ker = time_stride * 2
stri = time_stride
pad = True
last_freq = False
if freq and freqs <= kernel_size:
ker = freqs
pad = False
last_freq = True
kw = {
"kernel_size": ker,
"stride": stri,
"freq": freq,
"pad": pad,
"norm": norm,
"rewrite": rewrite,
"norm_groups": norm_groups,
"dconv_kw": {"lstm": lstm, "attn": attn, "depth": dconv_depth, "compress": dconv_comp, "init": dconv_init, "gelu": True},
}
kwt = dict(kw)
kwt["freq"] = 0
kwt["kernel_size"] = kernel_size
kwt["stride"] = stride
kwt["pad"] = True
kw_dec = dict(kw)
multi = False
if multi_freqs and index < multi_freqs_depth:
multi = True
kw_dec["context_freq"] = False
if last_freq:
chout_z = max(chout, chout_z)
chout = chout_z
enc = HEncLayer(chin_z, chout_z, dconv=dconv_mode & 1, context=context_enc, **kw)
if hybrid and freq:
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc, empty=last_freq, **kwt)
self.tencoder.append(tenc)
if multi: enc = MultiWrap(enc, multi_freqs)
self.encoder.append(enc)
if index == 0:
chin = self.audio_channels * len(self.sources)
chin_z = chin
if self.cac: chin_z *= 2
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2, last=index == 0, context=context, **kw_dec)
if multi: dec = MultiWrap(dec, multi_freqs)
if hybrid and freq:
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq, last=index == 0, context=context, **kwt)
self.tdecoder.insert(0, tdec)
self.decoder.insert(0, dec)
chin = chout
chin_z = chout_z
chout = int(growth * chout)
chout_z = int(growth * chout_z)
if freq:
if freqs <= kernel_size: freqs = 1
else: freqs //= stride
if index == 0 and freq_emb:
self.freq_emb = ScaledEmbedding(freqs, chin_z, smooth=emb_smooth, scale=emb_scale)
self.freq_emb_scale = freq_emb
if rescale: rescale_module(self, reference=rescale)
def _spec(self, x):
hl = self.hop_length
nfft = self.nfft
if self.hybrid:
assert hl == nfft // 4
le = int(math.ceil(x.shape[-1] / hl))
pad = hl // 2 * 3
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode="reflect") if not self.hybrid_old else pad1d(x, (pad, pad + le * hl - x.shape[-1]))
z = spectro(x, nfft, hl)[..., :-1, :]
if self.hybrid:
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
z = z[..., 2 : 2 + le]
return z
def _ispec(self, z, length=None, scale=0):
hl = self.hop_length // (4**scale)
z = F.pad(z, (0, 0, 0, 1))
if self.hybrid:
z = F.pad(z, (2, 2))
pad = hl // 2 * 3
le = hl * int(math.ceil(length / hl)) + 2 * pad if not self.hybrid_old else hl * int(math.ceil(length / hl))
x = ispectro(z, hl, length=le)
x = x[..., pad : pad + length] if not self.hybrid_old else x[..., :length]
else: x = ispectro(z, hl, length)
return x
def _magnitude(self, z):
if self.cac:
B, C, Fr, T = z.shape
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
m = m.reshape(B, C * 2, Fr, T)
else: m = z.abs()
return m
def _mask(self, z, m):
niters = self.wiener_iters
if self.cac:
B, S, C, Fr, T = m.shape
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
out = torch.view_as_complex(out.contiguous())
return out
if self.training: niters = self.end_iters
if niters < 0:
z = z[:, None]
return z / (1e-8 + z.abs()) * m
else: return self._wiener(m, z, niters)
def _wiener(self, mag_out, mix_stft, niters):
init = mix_stft.dtype
wiener_win_len = 300
residual = self.wiener_residual
B, S, C, Fq, T = mag_out.shape
mag_out = mag_out.permute(0, 4, 3, 2, 1)
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
outs = []
for sample in range(B):
pos = 0
out = []
for pos in range(0, T, wiener_win_len):
frame = slice(pos, pos + wiener_win_len)
z_out = wiener(mag_out[sample, frame], mix_stft[sample, frame], niters, residual=residual)
out.append(z_out.transpose(-1, -2))
outs.append(torch.cat(out, dim=0))
out = torch.view_as_complex(torch.stack(outs, 0))
out = out.permute(0, 4, 3, 2, 1).contiguous()
if residual: out = out[:, :-1]
assert list(out.shape) == [B, S, C, Fq, T]
return out.to(init)
def forward(self, mix):
x = mix
length = x.shape[-1]
z = self._spec(mix)
mag = self._magnitude(z).to(mix.device)
x = mag
B, C, Fq, T = x.shape
mean = x.mean(dim=(1, 2, 3), keepdim=True)
std = x.std(dim=(1, 2, 3), keepdim=True)
x = (x - mean) / (1e-5 + std)
if self.hybrid:
xt = mix
meant = xt.mean(dim=(1, 2), keepdim=True)
stdt = xt.std(dim=(1, 2), keepdim=True)
xt = (xt - meant) / (1e-5 + stdt)
saved = []
saved_t = []
lengths = []
lengths_t = []
for idx, encode in enumerate(self.encoder):
lengths.append(x.shape[-1])
inject = None
if self.hybrid and idx < len(self.tencoder):
lengths_t.append(xt.shape[-1])
tenc = self.tencoder[idx]
xt = tenc(xt)
if not tenc.empty: saved_t.append(xt)
else: inject = xt
x = encode(x, inject)
if idx == 0 and self.freq_emb is not None:
frs = torch.arange(x.shape[-2], device=x.device)
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
x = x + self.freq_emb_scale * emb
saved.append(x)
x = torch.zeros_like(x)
if self.hybrid: xt = torch.zeros_like(x)
for idx, decode in enumerate(self.decoder):
skip = saved.pop(-1)
x, pre = decode(x, skip, lengths.pop(-1))
if self.hybrid: offset = self.depth - len(self.tdecoder)
if self.hybrid and idx >= offset:
tdec = self.tdecoder[idx - offset]
length_t = lengths_t.pop(-1)
if tdec.empty:
assert pre.shape[2] == 1, pre.shape
pre = pre[:, :, 0]
xt, _ = tdec(pre, None, length_t)
else:
skip = saved_t.pop(-1)
xt, _ = tdec(xt, skip, length_t)
assert len(saved) == 0
assert len(lengths_t) == 0
assert len(saved_t) == 0
S = len(self.sources)
x = x.view(B, S, -1, Fq, T)
x = x * std[:, None] + mean[:, None]
device_type = x.device.type
device_load = f"{device_type}:{x.device.index}" if not device_type == "mps" else device_type
x_is_other_gpu = not device_type in ["cuda", "cpu"]
if x_is_other_gpu: x = x.cpu()
zout = self._mask(z, x)
x = self._ispec(zout, length)
if x_is_other_gpu: x = x.to(device_load)
if self.hybrid:
xt = xt.view(B, S, -1, length)
xt = xt * stdt[:, None] + meant[:, None]
x = xt + x
return x |