AnhP's picture
Upload 65 files
98bb602 verified
raw
history blame
11.3 kB
import math
import torch
import julius
import typing as tp
from torch import nn
from torch.nn import functional as F
from .utils import center_trim
from .states import capture_init
def unfold(a, kernel_size, stride):
*shape, length = a.shape
n_frames = math.ceil(length / stride)
tgt_length = (n_frames - 1) * stride + kernel_size
a = F.pad(a, (0, tgt_length - length))
strides = list(a.stride())
assert strides[-1] == 1
strides = strides[:-1] + [stride, 1]
return a.as_strided([*shape, n_frames, kernel_size], strides)
def rescale_conv(conv, reference):
scale = (conv.weight.std().detach() / reference) ** 0.5
conv.weight.data /= scale
if conv.bias is not None: conv.bias.data /= scale
def rescale_module(module, reference):
for sub in module.modules():
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)): rescale_conv(sub, reference)
class BLSTM(nn.Module):
def __init__(self, dim, layers=1, max_steps=None, skip=False):
super().__init__()
assert max_steps is None or max_steps % 4 == 0
self.max_steps = max_steps
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
self.linear = nn.Linear(2 * dim, dim)
self.skip = skip
def forward(self, x):
B, C, T = x.shape
y = x
framed = False
if self.max_steps is not None and T > self.max_steps:
width = self.max_steps
stride = width // 2
frames = unfold(x, width, stride)
nframes = frames.shape[2]
framed = True
x = frames.permute(0, 2, 1, 3).reshape(-1, C, width)
x = x.permute(2, 0, 1)
x = self.lstm(x)[0]
x = self.linear(x)
x = x.permute(1, 2, 0)
if framed:
out = []
frames = x.reshape(B, -1, C, width)
limit = stride // 2
for k in range(nframes):
if k == 0: out.append(frames[:, k, :, :-limit])
elif k == nframes - 1: out.append(frames[:, k, :, limit:])
else: out.append(frames[:, k, :, limit:-limit])
out = torch.cat(out, -1)
out = out[..., :T]
x = out
if self.skip: x = x + y
return x
class LayerScale(nn.Module):
def __init__(self, channels: int, init: float = 0):
super().__init__()
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
self.scale.data[:] = init
def forward(self, x):
return self.scale[:, None] * x
class DConv(nn.Module):
def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4, norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True, kernel=3, dilate=True):
super().__init__()
assert kernel % 2 == 1
self.channels = channels
self.compress = compress
self.depth = abs(depth)
dilate = depth > 0
norm_fn: tp.Callable[[int], nn.Module]
norm_fn = lambda d: nn.Identity()
if norm: norm_fn = lambda d: nn.GroupNorm(1, d)
hidden = int(channels / compress)
act: tp.Type[nn.Module]
act = nn.GELU if gelu else nn.ReLU
self.layers = nn.ModuleList([])
for d in range(self.depth):
dilation = 2**d if dilate else 1
padding = dilation * (kernel // 2)
mods = [
nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding),
norm_fn(hidden),
act(),
nn.Conv1d(hidden, 2 * channels, 1),
norm_fn(2 * channels),
nn.GLU(1),
LayerScale(channels, init),
]
if attn: mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay))
if lstm: mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True))
layer = nn.Sequential(*mods)
self.layers.append(layer)
def forward(self, x):
for layer in self.layers:
x = x + layer(x)
return x
class LocalState(nn.Module):
def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4):
super().__init__()
assert channels % heads == 0, (channels, heads)
self.heads = heads
self.nfreqs = nfreqs
self.ndecay = ndecay
self.content = nn.Conv1d(channels, channels, 1)
self.query = nn.Conv1d(channels, channels, 1)
self.key = nn.Conv1d(channels, channels, 1)
if nfreqs: self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1)
if ndecay:
self.query_decay = nn.Conv1d(channels, heads * ndecay, 1)
self.query_decay.weight.data *= 0.01
assert self.query_decay.bias is not None
self.query_decay.bias.data[:] = -2
self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1)
def forward(self, x):
B, C, T = x.shape
heads = self.heads
indexes = torch.arange(T, device=x.device, dtype=x.dtype)
delta = indexes[:, None] - indexes[None, :]
queries = self.query(x).view(B, heads, -1, T)
keys = self.key(x).view(B, heads, -1, T)
dots = torch.einsum("bhct,bhcs->bhts", keys, queries)
dots /= keys.shape[2] ** 0.5
if self.nfreqs:
periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype)
freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1))
freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs**0.5
dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q)
if self.ndecay:
decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype)
decay_q = self.query_decay(x).view(B, heads, -1, T)
decay_q = torch.sigmoid(decay_q) / 2
decay_kernel = -decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5
dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q)
dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100)
weights = torch.softmax(dots, dim=2)
content = self.content(x).view(B, heads, -1, T)
result = torch.einsum("bhts,bhct->bhcs", weights, content)
if self.nfreqs:
time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel)
result = torch.cat([result, time_sig], 2)
result = result.reshape(B, -1, T)
return x + self.proj(result)
class Demucs(nn.Module):
@capture_init
def __init__(self, sources, audio_channels=2, channels=64, growth=2.0, depth=6, rewrite=True, lstm_layers=0, kernel_size=8, stride=4, context=1, gelu=True, glu=True, norm_starts=4, norm_groups=4, dconv_mode=1, dconv_depth=2, dconv_comp=4, dconv_attn=4, dconv_lstm=4, dconv_init=1e-4, normalize=True, resample=True, rescale=0.1, samplerate=44100, segment=4 * 10):
super().__init__()
self.audio_channels = audio_channels
self.sources = sources
self.kernel_size = kernel_size
self.context = context
self.stride = stride
self.depth = depth
self.resample = resample
self.channels = channels
self.normalize = normalize
self.samplerate = samplerate
self.segment = segment
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
self.skip_scales = nn.ModuleList()
if glu:
activation = nn.GLU(dim=1)
ch_scale = 2
else:
activation = nn.ReLU()
ch_scale = 1
act2 = nn.GELU if gelu else nn.ReLU
in_channels = audio_channels
padding = 0
for index in range(depth):
norm_fn = lambda d: nn.Identity()
if index >= norm_starts: norm_fn = lambda d: nn.GroupNorm(norm_groups, d)
encode = []
encode += [nn.Conv1d(in_channels, channels, kernel_size, stride), norm_fn(channels), act2()]
attn = index >= dconv_attn
lstm = index >= dconv_lstm
if dconv_mode & 1: encode += [DConv(channels, depth=dconv_depth, init=dconv_init, compress=dconv_comp, attn=attn, lstm=lstm)]
if rewrite: encode += [nn.Conv1d(channels, ch_scale * channels, 1), norm_fn(ch_scale * channels), activation]
self.encoder.append(nn.Sequential(*encode))
decode = []
out_channels = in_channels if index > 0 else len(self.sources) * audio_channels
if rewrite: decode += [nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context), norm_fn(ch_scale * channels), activation]
if dconv_mode & 2: decode += [DConv(channels, depth=dconv_depth, init=dconv_init, compress=dconv_comp, attn=attn, lstm=lstm)]
decode += [nn.ConvTranspose1d(channels, out_channels, kernel_size, stride, padding=padding)]
if index > 0: decode += [norm_fn(out_channels), act2()]
self.decoder.insert(0, nn.Sequential(*decode))
in_channels = channels
channels = int(growth * channels)
channels = in_channels
self.lstm = BLSTM(channels, lstm_layers) if lstm_layers else None
if rescale: rescale_module(self, reference=rescale)
def valid_length(self, length):
if self.resample: length *= 2
for _ in range(self.depth):
length = math.ceil((length - self.kernel_size) / self.stride) + 1
length = max(1, length)
for _ in range(self.depth):
length = (length - 1) * self.stride + self.kernel_size
if self.resample: length = math.ceil(length / 2)
return int(length)
def forward(self, mix):
x = mix
length = x.shape[-1]
if self.normalize:
mono = mix.mean(dim=1, keepdim=True)
mean = mono.mean(dim=-1, keepdim=True)
std = mono.std(dim=-1, keepdim=True)
x = (x - mean) / (1e-5 + std)
else:
mean = 0
std = 1
delta = self.valid_length(length) - length
x = F.pad(x, (delta // 2, delta - delta // 2))
if self.resample: x = julius.resample_frac(x, 1, 2)
saved = []
for encode in self.encoder:
x = encode(x)
saved.append(x)
if self.lstm: x = self.lstm(x)
for decode in self.decoder:
skip = saved.pop(-1)
skip = center_trim(skip, x)
x = decode(x + skip)
if self.resample: x = julius.resample_frac(x, 2, 1)
x = x * std + mean
x = center_trim(x, length)
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
return x
def load_state_dict(self, state, strict=True):
for idx in range(self.depth):
for a in ["encoder", "decoder"]:
for b in ["bias", "weight"]:
new = f"{a}.{idx}.3.{b}"
old = f"{a}.{idx}.2.{b}"
if old in state and new not in state: state[new] = state.pop(old)
super().load_state_dict(state, strict=strict)