Spaces:
Build error
Build error
File size: 11,302 Bytes
98bb602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import math
import torch
import julius
import typing as tp
from torch import nn
from torch.nn import functional as F
from .utils import center_trim
from .states import capture_init
def unfold(a, kernel_size, stride):
*shape, length = a.shape
n_frames = math.ceil(length / stride)
tgt_length = (n_frames - 1) * stride + kernel_size
a = F.pad(a, (0, tgt_length - length))
strides = list(a.stride())
assert strides[-1] == 1
strides = strides[:-1] + [stride, 1]
return a.as_strided([*shape, n_frames, kernel_size], strides)
def rescale_conv(conv, reference):
scale = (conv.weight.std().detach() / reference) ** 0.5
conv.weight.data /= scale
if conv.bias is not None: conv.bias.data /= scale
def rescale_module(module, reference):
for sub in module.modules():
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)): rescale_conv(sub, reference)
class BLSTM(nn.Module):
def __init__(self, dim, layers=1, max_steps=None, skip=False):
super().__init__()
assert max_steps is None or max_steps % 4 == 0
self.max_steps = max_steps
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
self.linear = nn.Linear(2 * dim, dim)
self.skip = skip
def forward(self, x):
B, C, T = x.shape
y = x
framed = False
if self.max_steps is not None and T > self.max_steps:
width = self.max_steps
stride = width // 2
frames = unfold(x, width, stride)
nframes = frames.shape[2]
framed = True
x = frames.permute(0, 2, 1, 3).reshape(-1, C, width)
x = x.permute(2, 0, 1)
x = self.lstm(x)[0]
x = self.linear(x)
x = x.permute(1, 2, 0)
if framed:
out = []
frames = x.reshape(B, -1, C, width)
limit = stride // 2
for k in range(nframes):
if k == 0: out.append(frames[:, k, :, :-limit])
elif k == nframes - 1: out.append(frames[:, k, :, limit:])
else: out.append(frames[:, k, :, limit:-limit])
out = torch.cat(out, -1)
out = out[..., :T]
x = out
if self.skip: x = x + y
return x
class LayerScale(nn.Module):
def __init__(self, channels: int, init: float = 0):
super().__init__()
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
self.scale.data[:] = init
def forward(self, x):
return self.scale[:, None] * x
class DConv(nn.Module):
def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4, norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True, kernel=3, dilate=True):
super().__init__()
assert kernel % 2 == 1
self.channels = channels
self.compress = compress
self.depth = abs(depth)
dilate = depth > 0
norm_fn: tp.Callable[[int], nn.Module]
norm_fn = lambda d: nn.Identity()
if norm: norm_fn = lambda d: nn.GroupNorm(1, d)
hidden = int(channels / compress)
act: tp.Type[nn.Module]
act = nn.GELU if gelu else nn.ReLU
self.layers = nn.ModuleList([])
for d in range(self.depth):
dilation = 2**d if dilate else 1
padding = dilation * (kernel // 2)
mods = [
nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding),
norm_fn(hidden),
act(),
nn.Conv1d(hidden, 2 * channels, 1),
norm_fn(2 * channels),
nn.GLU(1),
LayerScale(channels, init),
]
if attn: mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay))
if lstm: mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True))
layer = nn.Sequential(*mods)
self.layers.append(layer)
def forward(self, x):
for layer in self.layers:
x = x + layer(x)
return x
class LocalState(nn.Module):
def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4):
super().__init__()
assert channels % heads == 0, (channels, heads)
self.heads = heads
self.nfreqs = nfreqs
self.ndecay = ndecay
self.content = nn.Conv1d(channels, channels, 1)
self.query = nn.Conv1d(channels, channels, 1)
self.key = nn.Conv1d(channels, channels, 1)
if nfreqs: self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1)
if ndecay:
self.query_decay = nn.Conv1d(channels, heads * ndecay, 1)
self.query_decay.weight.data *= 0.01
assert self.query_decay.bias is not None
self.query_decay.bias.data[:] = -2
self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1)
def forward(self, x):
B, C, T = x.shape
heads = self.heads
indexes = torch.arange(T, device=x.device, dtype=x.dtype)
delta = indexes[:, None] - indexes[None, :]
queries = self.query(x).view(B, heads, -1, T)
keys = self.key(x).view(B, heads, -1, T)
dots = torch.einsum("bhct,bhcs->bhts", keys, queries)
dots /= keys.shape[2] ** 0.5
if self.nfreqs:
periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype)
freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1))
freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs**0.5
dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q)
if self.ndecay:
decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype)
decay_q = self.query_decay(x).view(B, heads, -1, T)
decay_q = torch.sigmoid(decay_q) / 2
decay_kernel = -decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5
dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q)
dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100)
weights = torch.softmax(dots, dim=2)
content = self.content(x).view(B, heads, -1, T)
result = torch.einsum("bhts,bhct->bhcs", weights, content)
if self.nfreqs:
time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel)
result = torch.cat([result, time_sig], 2)
result = result.reshape(B, -1, T)
return x + self.proj(result)
class Demucs(nn.Module):
@capture_init
def __init__(self, sources, audio_channels=2, channels=64, growth=2.0, depth=6, rewrite=True, lstm_layers=0, kernel_size=8, stride=4, context=1, gelu=True, glu=True, norm_starts=4, norm_groups=4, dconv_mode=1, dconv_depth=2, dconv_comp=4, dconv_attn=4, dconv_lstm=4, dconv_init=1e-4, normalize=True, resample=True, rescale=0.1, samplerate=44100, segment=4 * 10):
super().__init__()
self.audio_channels = audio_channels
self.sources = sources
self.kernel_size = kernel_size
self.context = context
self.stride = stride
self.depth = depth
self.resample = resample
self.channels = channels
self.normalize = normalize
self.samplerate = samplerate
self.segment = segment
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
self.skip_scales = nn.ModuleList()
if glu:
activation = nn.GLU(dim=1)
ch_scale = 2
else:
activation = nn.ReLU()
ch_scale = 1
act2 = nn.GELU if gelu else nn.ReLU
in_channels = audio_channels
padding = 0
for index in range(depth):
norm_fn = lambda d: nn.Identity()
if index >= norm_starts: norm_fn = lambda d: nn.GroupNorm(norm_groups, d)
encode = []
encode += [nn.Conv1d(in_channels, channels, kernel_size, stride), norm_fn(channels), act2()]
attn = index >= dconv_attn
lstm = index >= dconv_lstm
if dconv_mode & 1: encode += [DConv(channels, depth=dconv_depth, init=dconv_init, compress=dconv_comp, attn=attn, lstm=lstm)]
if rewrite: encode += [nn.Conv1d(channels, ch_scale * channels, 1), norm_fn(ch_scale * channels), activation]
self.encoder.append(nn.Sequential(*encode))
decode = []
out_channels = in_channels if index > 0 else len(self.sources) * audio_channels
if rewrite: decode += [nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context), norm_fn(ch_scale * channels), activation]
if dconv_mode & 2: decode += [DConv(channels, depth=dconv_depth, init=dconv_init, compress=dconv_comp, attn=attn, lstm=lstm)]
decode += [nn.ConvTranspose1d(channels, out_channels, kernel_size, stride, padding=padding)]
if index > 0: decode += [norm_fn(out_channels), act2()]
self.decoder.insert(0, nn.Sequential(*decode))
in_channels = channels
channels = int(growth * channels)
channels = in_channels
self.lstm = BLSTM(channels, lstm_layers) if lstm_layers else None
if rescale: rescale_module(self, reference=rescale)
def valid_length(self, length):
if self.resample: length *= 2
for _ in range(self.depth):
length = math.ceil((length - self.kernel_size) / self.stride) + 1
length = max(1, length)
for _ in range(self.depth):
length = (length - 1) * self.stride + self.kernel_size
if self.resample: length = math.ceil(length / 2)
return int(length)
def forward(self, mix):
x = mix
length = x.shape[-1]
if self.normalize:
mono = mix.mean(dim=1, keepdim=True)
mean = mono.mean(dim=-1, keepdim=True)
std = mono.std(dim=-1, keepdim=True)
x = (x - mean) / (1e-5 + std)
else:
mean = 0
std = 1
delta = self.valid_length(length) - length
x = F.pad(x, (delta // 2, delta - delta // 2))
if self.resample: x = julius.resample_frac(x, 1, 2)
saved = []
for encode in self.encoder:
x = encode(x)
saved.append(x)
if self.lstm: x = self.lstm(x)
for decode in self.decoder:
skip = saved.pop(-1)
skip = center_trim(skip, x)
x = decode(x + skip)
if self.resample: x = julius.resample_frac(x, 2, 1)
x = x * std + mean
x = center_trim(x, length)
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
return x
def load_state_dict(self, state, strict=True):
for idx in range(self.depth):
for a in ["encoder", "decoder"]:
for b in ["bias", "weight"]:
new = f"{a}.{idx}.3.{b}"
old = f"{a}.{idx}.2.{b}"
if old in state and new not in state: state[new] = state.pop(old)
super().load_state_dict(state, strict=strict) |