Spaces:
Build error
Build error
import os | |
import sys | |
import yaml | |
import torch | |
import numpy as np | |
import typing as tp | |
from pathlib import Path | |
from hashlib import sha256 | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from main.configs.config import Config | |
from main.library.uvr5_separator import spec_utils | |
from main.library.uvr5_separator.demucs.hdemucs import HDemucs | |
from main.library.uvr5_separator.demucs.states import load_model | |
from main.library.uvr5_separator.demucs.apply import BagOfModels, Model | |
from main.library.uvr5_separator.common_separator import CommonSeparator | |
from main.library.uvr5_separator.demucs.apply import apply_model, demucs_segments | |
translations = Config().translations | |
DEMUCS_4_SOURCE = ["drums", "bass", "other", "vocals"] | |
DEMUCS_2_SOURCE_MAPPER = { | |
CommonSeparator.INST_STEM: 0, | |
CommonSeparator.VOCAL_STEM: 1 | |
} | |
DEMUCS_4_SOURCE_MAPPER = { | |
CommonSeparator.BASS_STEM: 0, | |
CommonSeparator.DRUM_STEM: 1, | |
CommonSeparator.OTHER_STEM: 2, | |
CommonSeparator.VOCAL_STEM: 3 | |
} | |
DEMUCS_6_SOURCE_MAPPER = { | |
CommonSeparator.BASS_STEM: 0, | |
CommonSeparator.DRUM_STEM: 1, | |
CommonSeparator.OTHER_STEM: 2, | |
CommonSeparator.VOCAL_STEM: 3, | |
CommonSeparator.GUITAR_STEM: 4, | |
CommonSeparator.PIANO_STEM: 5, | |
} | |
REMOTE_ROOT = Path(__file__).parent / "remote" | |
PRETRAINED_MODELS = { | |
"demucs": "e07c671f", | |
"demucs48_hq": "28a1282c", | |
"demucs_extra": "3646af93", | |
"demucs_quantized": "07afea75", | |
"tasnet": "beb46fac", | |
"tasnet_extra": "df3777b2", | |
"demucs_unittest": "09ebc15f", | |
} | |
sys.path.insert(0, os.path.join(os.getcwd(), "main", "library", "uvr5_separator")) | |
AnyModel = tp.Union[Model, BagOfModels] | |
class DemucsSeparator(CommonSeparator): | |
def __init__(self, common_config, arch_config): | |
super().__init__(config=common_config) | |
self.segment_size = arch_config.get("segment_size", "Default") | |
self.shifts = arch_config.get("shifts", 2) | |
self.overlap = arch_config.get("overlap", 0.25) | |
self.segments_enabled = arch_config.get("segments_enabled", True) | |
self.logger.debug(translations["demucs_info"].format(segment_size=self.segment_size, segments_enabled=self.segments_enabled)) | |
self.logger.debug(translations["demucs_info_2"].format(shifts=self.shifts, overlap=self.overlap)) | |
self.demucs_source_map = DEMUCS_4_SOURCE_MAPPER | |
self.audio_file_path = None | |
self.audio_file_base = None | |
self.demucs_model_instance = None | |
self.logger.info(translations["start_demucs"]) | |
def separate(self, audio_file_path): | |
self.logger.debug(translations["start_separator"]) | |
source = None | |
stem_source = None | |
inst_source = {} | |
self.audio_file_path = audio_file_path | |
self.audio_file_base = os.path.splitext(os.path.basename(audio_file_path))[0] | |
self.logger.debug(translations["prepare_mix"]) | |
mix = self.prepare_mix(self.audio_file_path) | |
self.logger.debug(translations["demix"].format(shape=mix.shape)) | |
self.logger.debug(translations["cancel_mix"]) | |
self.demucs_model_instance = HDemucs(sources=DEMUCS_4_SOURCE) | |
self.demucs_model_instance = get_demucs_model(name=os.path.splitext(os.path.basename(self.model_path))[0], repo=Path(os.path.dirname(self.model_path))) | |
self.demucs_model_instance = demucs_segments(self.segment_size, self.demucs_model_instance) | |
self.demucs_model_instance.to(self.torch_device) | |
self.demucs_model_instance.eval() | |
self.logger.debug(translations["model_review"]) | |
source = self.demix_demucs(mix) | |
del self.demucs_model_instance | |
self.clear_gpu_cache() | |
self.logger.debug(translations["del_gpu_cache_after_demix"]) | |
output_files = [] | |
self.logger.debug(translations["process_output_file"]) | |
if isinstance(inst_source, np.ndarray): | |
self.logger.debug(translations["process_ver"]) | |
source_reshape = spec_utils.reshape_sources(inst_source[self.demucs_source_map[CommonSeparator.VOCAL_STEM]], source[self.demucs_source_map[CommonSeparator.VOCAL_STEM]]) | |
inst_source[self.demucs_source_map[CommonSeparator.VOCAL_STEM]] = source_reshape | |
source = inst_source | |
if isinstance(source, np.ndarray): | |
source_length = len(source) | |
self.logger.debug(translations["source_length"].format(source_length=source_length)) | |
match source_length: | |
case 2: | |
self.logger.debug(translations["set_map"].format(part="2")) | |
self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER | |
case 6: | |
self.logger.debug(translations["set_map"].format(part="6")) | |
self.demucs_source_map = DEMUCS_6_SOURCE_MAPPER | |
case _: | |
self.logger.debug(translations["set_map"].format(part="2")) | |
self.demucs_source_map = DEMUCS_4_SOURCE_MAPPER | |
self.logger.debug(translations["process_all_part"]) | |
for stem_name, stem_value in self.demucs_source_map.items(): | |
if self.output_single_stem is not None: | |
if stem_name.lower() != self.output_single_stem.lower(): | |
self.logger.debug(translations["skip_part"].format(stem_name=stem_name, output_single_stem=self.output_single_stem)) | |
continue | |
stem_path = os.path.join(f"{self.audio_file_base}_({stem_name})_{self.model_name}.{self.output_format.lower()}") | |
stem_source = source[stem_value].T | |
self.final_process(stem_path, stem_source, stem_name) | |
output_files.append(stem_path) | |
return output_files | |
def demix_demucs(self, mix): | |
self.logger.debug(translations["starting_demix_demucs"]) | |
processed = {} | |
mix = torch.tensor(mix, dtype=torch.float32) | |
ref = mix.mean(0) | |
mix = (mix - ref.mean()) / ref.std() | |
mix_infer = mix | |
with torch.no_grad(): | |
self.logger.debug(translations["model_infer"]) | |
sources = apply_model(model=self.demucs_model_instance, mix=mix_infer[None], shifts=self.shifts, split=self.segments_enabled, overlap=self.overlap, static_shifts=1 if self.shifts == 0 else self.shifts, set_progress_bar=None, device=self.torch_device, progress=True)[0] | |
sources = (sources * ref.std() + ref.mean()).cpu().numpy() | |
sources[[0, 1]] = sources[[1, 0]] | |
processed[mix] = sources[:, :, 0:None].copy() | |
sources = list(processed.values()) | |
sources = [s[:, :, 0:None] for s in sources] | |
sources = np.concatenate(sources, axis=-1) | |
return sources | |
class ModelOnlyRepo: | |
def has_model(self, sig: str) -> bool: | |
raise NotImplementedError() | |
def get_model(self, sig: str) -> Model: | |
raise NotImplementedError() | |
class RemoteRepo(ModelOnlyRepo): | |
def __init__(self, models: tp.Dict[str, str]): | |
self._models = models | |
def has_model(self, sig: str) -> bool: | |
return sig in self._models | |
def get_model(self, sig: str) -> Model: | |
try: | |
url = self._models[sig] | |
except KeyError: | |
raise RuntimeError(translations["not_found_model_signature"].format(sig=sig)) | |
pkg = torch.hub.load_state_dict_from_url(url, map_location="cpu", check_hash=True) | |
return load_model(pkg) | |
class LocalRepo(ModelOnlyRepo): | |
def __init__(self, root: Path): | |
self.root = root | |
self.scan() | |
def scan(self): | |
self._models = {} | |
self._checksums = {} | |
for file in self.root.iterdir(): | |
if file.suffix == ".th": | |
if "-" in file.stem: | |
xp_sig, checksum = file.stem.split("-") | |
self._checksums[xp_sig] = checksum | |
else: xp_sig = file.stem | |
if xp_sig in self._models: raise RuntimeError(translations["del_all_but_one"].format(xp_sig=xp_sig)) | |
self._models[xp_sig] = file | |
def has_model(self, sig: str) -> bool: | |
return sig in self._models | |
def get_model(self, sig: str) -> Model: | |
try: | |
file = self._models[sig] | |
except KeyError: | |
raise RuntimeError(translations["not_found_model_signature"].format(sig=sig)) | |
if sig in self._checksums: check_checksum(file, self._checksums[sig]) | |
return load_model(file) | |
class BagOnlyRepo: | |
def __init__(self, root: Path, model_repo: ModelOnlyRepo): | |
self.root = root | |
self.model_repo = model_repo | |
self.scan() | |
def scan(self): | |
self._bags = {} | |
for file in self.root.iterdir(): | |
if file.suffix == ".yaml": self._bags[file.stem] = file | |
def has_model(self, name: str) -> bool: | |
return name in self._bags | |
def get_model(self, name: str) -> BagOfModels: | |
try: | |
yaml_file = self._bags[name] | |
except KeyError: | |
raise RuntimeError(translations["name_not_pretrained"].format(name=name)) | |
bag = yaml.safe_load(open(yaml_file)) | |
signatures = bag["models"] | |
models = [self.model_repo.get_model(sig) for sig in signatures] | |
weights = bag.get("weights") | |
segment = bag.get("segment") | |
return BagOfModels(models, weights, segment) | |
class AnyModelRepo: | |
def __init__(self, model_repo: ModelOnlyRepo, bag_repo: BagOnlyRepo): | |
self.model_repo = model_repo | |
self.bag_repo = bag_repo | |
def has_model(self, name_or_sig: str) -> bool: | |
return self.model_repo.has_model(name_or_sig) or self.bag_repo.has_model(name_or_sig) | |
def get_model(self, name_or_sig: str) -> AnyModel: | |
if self.model_repo.has_model(name_or_sig): return self.model_repo.get_model(name_or_sig) | |
else: return self.bag_repo.get_model(name_or_sig) | |
def check_checksum(path: Path, checksum: str): | |
sha = sha256() | |
with open(path, "rb") as file: | |
while 1: | |
buf = file.read(2**20) | |
if not buf: break | |
sha.update(buf) | |
actual_checksum = sha.hexdigest()[: len(checksum)] | |
if actual_checksum != checksum: raise RuntimeError(translations["invalid_checksum"].format(path=path, checksum=checksum, actual_checksum=actual_checksum)) | |
def _parse_remote_files(remote_file_list) -> tp.Dict[str, str]: | |
root: str = "" | |
models: tp.Dict[str, str] = {} | |
for line in remote_file_list.read_text().split("\n"): | |
line = line.strip() | |
if line.startswith("#"): continue | |
elif line.startswith("root:"): root = line.split(":", 1)[1].strip() | |
else: | |
sig = line.split("-", 1)[0] | |
assert sig not in models | |
models[sig] = "https://dl.fbaipublicfiles.com/demucs/mdx_final/" + root + line | |
return models | |
def get_demucs_model(name: str, repo: tp.Optional[Path] = None): | |
if name == "demucs_unittest": return HDemucs(channels=4, sources=DEMUCS_4_SOURCE) | |
model_repo: ModelOnlyRepo | |
if repo is None: | |
models = _parse_remote_files(REMOTE_ROOT / "files.txt") | |
model_repo = RemoteRepo(models) | |
bag_repo = BagOnlyRepo(REMOTE_ROOT, model_repo) | |
else: | |
if not repo.is_dir(): print(translations["repo_must_be_folder"].format(repo=repo)) | |
model_repo = LocalRepo(repo) | |
bag_repo = BagOnlyRepo(repo, model_repo) | |
any_repo = AnyModelRepo(model_repo, bag_repo) | |
model = any_repo.get_model(name) | |
model.eval() | |
return model |