Spaces:
Build error
Build error
File size: 11,526 Bytes
98bb602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import os
import sys
import yaml
import torch
import numpy as np
import typing as tp
from pathlib import Path
from hashlib import sha256
now_dir = os.getcwd()
sys.path.append(now_dir)
from main.configs.config import Config
from main.library.uvr5_separator import spec_utils
from main.library.uvr5_separator.demucs.hdemucs import HDemucs
from main.library.uvr5_separator.demucs.states import load_model
from main.library.uvr5_separator.demucs.apply import BagOfModels, Model
from main.library.uvr5_separator.common_separator import CommonSeparator
from main.library.uvr5_separator.demucs.apply import apply_model, demucs_segments
translations = Config().translations
DEMUCS_4_SOURCE = ["drums", "bass", "other", "vocals"]
DEMUCS_2_SOURCE_MAPPER = {
CommonSeparator.INST_STEM: 0,
CommonSeparator.VOCAL_STEM: 1
}
DEMUCS_4_SOURCE_MAPPER = {
CommonSeparator.BASS_STEM: 0,
CommonSeparator.DRUM_STEM: 1,
CommonSeparator.OTHER_STEM: 2,
CommonSeparator.VOCAL_STEM: 3
}
DEMUCS_6_SOURCE_MAPPER = {
CommonSeparator.BASS_STEM: 0,
CommonSeparator.DRUM_STEM: 1,
CommonSeparator.OTHER_STEM: 2,
CommonSeparator.VOCAL_STEM: 3,
CommonSeparator.GUITAR_STEM: 4,
CommonSeparator.PIANO_STEM: 5,
}
REMOTE_ROOT = Path(__file__).parent / "remote"
PRETRAINED_MODELS = {
"demucs": "e07c671f",
"demucs48_hq": "28a1282c",
"demucs_extra": "3646af93",
"demucs_quantized": "07afea75",
"tasnet": "beb46fac",
"tasnet_extra": "df3777b2",
"demucs_unittest": "09ebc15f",
}
sys.path.insert(0, os.path.join(os.getcwd(), "main", "library", "uvr5_separator"))
AnyModel = tp.Union[Model, BagOfModels]
class DemucsSeparator(CommonSeparator):
def __init__(self, common_config, arch_config):
super().__init__(config=common_config)
self.segment_size = arch_config.get("segment_size", "Default")
self.shifts = arch_config.get("shifts", 2)
self.overlap = arch_config.get("overlap", 0.25)
self.segments_enabled = arch_config.get("segments_enabled", True)
self.logger.debug(translations["demucs_info"].format(segment_size=self.segment_size, segments_enabled=self.segments_enabled))
self.logger.debug(translations["demucs_info_2"].format(shifts=self.shifts, overlap=self.overlap))
self.demucs_source_map = DEMUCS_4_SOURCE_MAPPER
self.audio_file_path = None
self.audio_file_base = None
self.demucs_model_instance = None
self.logger.info(translations["start_demucs"])
def separate(self, audio_file_path):
self.logger.debug(translations["start_separator"])
source = None
stem_source = None
inst_source = {}
self.audio_file_path = audio_file_path
self.audio_file_base = os.path.splitext(os.path.basename(audio_file_path))[0]
self.logger.debug(translations["prepare_mix"])
mix = self.prepare_mix(self.audio_file_path)
self.logger.debug(translations["demix"].format(shape=mix.shape))
self.logger.debug(translations["cancel_mix"])
self.demucs_model_instance = HDemucs(sources=DEMUCS_4_SOURCE)
self.demucs_model_instance = get_demucs_model(name=os.path.splitext(os.path.basename(self.model_path))[0], repo=Path(os.path.dirname(self.model_path)))
self.demucs_model_instance = demucs_segments(self.segment_size, self.demucs_model_instance)
self.demucs_model_instance.to(self.torch_device)
self.demucs_model_instance.eval()
self.logger.debug(translations["model_review"])
source = self.demix_demucs(mix)
del self.demucs_model_instance
self.clear_gpu_cache()
self.logger.debug(translations["del_gpu_cache_after_demix"])
output_files = []
self.logger.debug(translations["process_output_file"])
if isinstance(inst_source, np.ndarray):
self.logger.debug(translations["process_ver"])
source_reshape = spec_utils.reshape_sources(inst_source[self.demucs_source_map[CommonSeparator.VOCAL_STEM]], source[self.demucs_source_map[CommonSeparator.VOCAL_STEM]])
inst_source[self.demucs_source_map[CommonSeparator.VOCAL_STEM]] = source_reshape
source = inst_source
if isinstance(source, np.ndarray):
source_length = len(source)
self.logger.debug(translations["source_length"].format(source_length=source_length))
match source_length:
case 2:
self.logger.debug(translations["set_map"].format(part="2"))
self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER
case 6:
self.logger.debug(translations["set_map"].format(part="6"))
self.demucs_source_map = DEMUCS_6_SOURCE_MAPPER
case _:
self.logger.debug(translations["set_map"].format(part="2"))
self.demucs_source_map = DEMUCS_4_SOURCE_MAPPER
self.logger.debug(translations["process_all_part"])
for stem_name, stem_value in self.demucs_source_map.items():
if self.output_single_stem is not None:
if stem_name.lower() != self.output_single_stem.lower():
self.logger.debug(translations["skip_part"].format(stem_name=stem_name, output_single_stem=self.output_single_stem))
continue
stem_path = os.path.join(f"{self.audio_file_base}_({stem_name})_{self.model_name}.{self.output_format.lower()}")
stem_source = source[stem_value].T
self.final_process(stem_path, stem_source, stem_name)
output_files.append(stem_path)
return output_files
def demix_demucs(self, mix):
self.logger.debug(translations["starting_demix_demucs"])
processed = {}
mix = torch.tensor(mix, dtype=torch.float32)
ref = mix.mean(0)
mix = (mix - ref.mean()) / ref.std()
mix_infer = mix
with torch.no_grad():
self.logger.debug(translations["model_infer"])
sources = apply_model(model=self.demucs_model_instance, mix=mix_infer[None], shifts=self.shifts, split=self.segments_enabled, overlap=self.overlap, static_shifts=1 if self.shifts == 0 else self.shifts, set_progress_bar=None, device=self.torch_device, progress=True)[0]
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0, 1]] = sources[[1, 0]]
processed[mix] = sources[:, :, 0:None].copy()
sources = list(processed.values())
sources = [s[:, :, 0:None] for s in sources]
sources = np.concatenate(sources, axis=-1)
return sources
class ModelOnlyRepo:
def has_model(self, sig: str) -> bool:
raise NotImplementedError()
def get_model(self, sig: str) -> Model:
raise NotImplementedError()
class RemoteRepo(ModelOnlyRepo):
def __init__(self, models: tp.Dict[str, str]):
self._models = models
def has_model(self, sig: str) -> bool:
return sig in self._models
def get_model(self, sig: str) -> Model:
try:
url = self._models[sig]
except KeyError:
raise RuntimeError(translations["not_found_model_signature"].format(sig=sig))
pkg = torch.hub.load_state_dict_from_url(url, map_location="cpu", check_hash=True)
return load_model(pkg)
class LocalRepo(ModelOnlyRepo):
def __init__(self, root: Path):
self.root = root
self.scan()
def scan(self):
self._models = {}
self._checksums = {}
for file in self.root.iterdir():
if file.suffix == ".th":
if "-" in file.stem:
xp_sig, checksum = file.stem.split("-")
self._checksums[xp_sig] = checksum
else: xp_sig = file.stem
if xp_sig in self._models: raise RuntimeError(translations["del_all_but_one"].format(xp_sig=xp_sig))
self._models[xp_sig] = file
def has_model(self, sig: str) -> bool:
return sig in self._models
def get_model(self, sig: str) -> Model:
try:
file = self._models[sig]
except KeyError:
raise RuntimeError(translations["not_found_model_signature"].format(sig=sig))
if sig in self._checksums: check_checksum(file, self._checksums[sig])
return load_model(file)
class BagOnlyRepo:
def __init__(self, root: Path, model_repo: ModelOnlyRepo):
self.root = root
self.model_repo = model_repo
self.scan()
def scan(self):
self._bags = {}
for file in self.root.iterdir():
if file.suffix == ".yaml": self._bags[file.stem] = file
def has_model(self, name: str) -> bool:
return name in self._bags
def get_model(self, name: str) -> BagOfModels:
try:
yaml_file = self._bags[name]
except KeyError:
raise RuntimeError(translations["name_not_pretrained"].format(name=name))
bag = yaml.safe_load(open(yaml_file))
signatures = bag["models"]
models = [self.model_repo.get_model(sig) for sig in signatures]
weights = bag.get("weights")
segment = bag.get("segment")
return BagOfModels(models, weights, segment)
class AnyModelRepo:
def __init__(self, model_repo: ModelOnlyRepo, bag_repo: BagOnlyRepo):
self.model_repo = model_repo
self.bag_repo = bag_repo
def has_model(self, name_or_sig: str) -> bool:
return self.model_repo.has_model(name_or_sig) or self.bag_repo.has_model(name_or_sig)
def get_model(self, name_or_sig: str) -> AnyModel:
if self.model_repo.has_model(name_or_sig): return self.model_repo.get_model(name_or_sig)
else: return self.bag_repo.get_model(name_or_sig)
def check_checksum(path: Path, checksum: str):
sha = sha256()
with open(path, "rb") as file:
while 1:
buf = file.read(2**20)
if not buf: break
sha.update(buf)
actual_checksum = sha.hexdigest()[: len(checksum)]
if actual_checksum != checksum: raise RuntimeError(translations["invalid_checksum"].format(path=path, checksum=checksum, actual_checksum=actual_checksum))
def _parse_remote_files(remote_file_list) -> tp.Dict[str, str]:
root: str = ""
models: tp.Dict[str, str] = {}
for line in remote_file_list.read_text().split("\n"):
line = line.strip()
if line.startswith("#"): continue
elif line.startswith("root:"): root = line.split(":", 1)[1].strip()
else:
sig = line.split("-", 1)[0]
assert sig not in models
models[sig] = "https://dl.fbaipublicfiles.com/demucs/mdx_final/" + root + line
return models
def get_demucs_model(name: str, repo: tp.Optional[Path] = None):
if name == "demucs_unittest": return HDemucs(channels=4, sources=DEMUCS_4_SOURCE)
model_repo: ModelOnlyRepo
if repo is None:
models = _parse_remote_files(REMOTE_ROOT / "files.txt")
model_repo = RemoteRepo(models)
bag_repo = BagOnlyRepo(REMOTE_ROOT, model_repo)
else:
if not repo.is_dir(): print(translations["repo_must_be_folder"].format(repo=repo))
model_repo = LocalRepo(repo)
bag_repo = BagOnlyRepo(repo, model_repo)
any_repo = AnyModelRepo(model_repo, bag_repo)
model = any_repo.get_model(name)
model.eval()
return model |