Spaces:
Sleeping
Sleeping
#img_gen_modal.py | |
import modal | |
import sys | |
import os | |
import random | |
from datetime import datetime | |
import random | |
import io | |
from config.config import models, prompts # Indirect import | |
import gradio as gr | |
volume = modal.Volume.from_name("flux-model-vol") # Reference your volume | |
app = modal.App("ctb-ai-img-gen-mondal") | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# CtB AI Image Generator") | |
with gr.Row(): | |
# Set default values for dropdowns | |
prompt_dropdown = gr.Dropdown(choices=[p["alias"] for p in prompts], label="Select Prompt", value=prompts[0]["alias"]) | |
team_dropdown = gr.Dropdown(choices=["Red", "Blue"], label="Select Team", value="Red") | |
model_dropdown = gr.Dropdown(choices=[m["alias"] for m in models], label="Select Model", value=models[0]["alias"]) | |
with gr.Row(): | |
# Add a text box for custom user input (max 200 characters) | |
custom_prompt_input = gr.Textbox(label="Custom Prompt (Optional)", placeholder="Enter additional details (max 200 chars)...", max_lines=1, max_length=200) | |
with gr.Row(): | |
generate_button = gr.Button("Generate Image") | |
with gr.Row(): | |
output_image = gr.Image(label="Generated Image") | |
with gr.Row(): | |
status_text = gr.Textbox(label="Status", placeholder="Waiting for input...", interactive=False) | |
def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
import gradio as gr | |
try: | |
# Generate the image | |
image_path, message = generate_image(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed) | |
return image_path, message | |
except Exception as e: | |
return None, f"An error occurred: {e}" | |
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, | |
num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
import torch | |
from diffusers import StableDiffusionPipeline | |
# Debug: Check if the volume is mounted correctly | |
print("Debug: Checking volume contents...") | |
try: | |
volume_contents = os.listdir("/volume") | |
print(f"Debug: Volume contents: {volume_contents}") | |
except Exception as e: | |
print(f"Debug: Error checking volume contents: {e}") | |
# Find the selected prompt and model | |
try: | |
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
except StopIteration: | |
return None, "ERROR: Invalid prompt or model selected." | |
# Debug: Check if the model directory exists | |
print(f"Debug: Checking if model directory exists: {model_name}") | |
if not os.path.exists(model_name): | |
return None, f"ERROR: Model directory not found at {model_name}" | |
# Initialize the pipeline using the local model | |
print("Debug: Loading model...") | |
# Determine the enemy color | |
enemy_color = "blue" if team_color.lower() == "red" else "red" | |
# Print the original prompt and dynamic values for debugging | |
print("Original Prompt:") | |
print(prompt) | |
print(f"Enemy Color: {enemy_color}") | |
print(f"Team Color: {team_color.lower()}") | |
# Format the prompt | |
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
# Print the formatted prompt for debugging | |
print("\nFormatted Prompt:") | |
print(prompt) | |
# Append custom prompt if provided | |
if custom_prompt and len(custom_prompt.strip()) > 0: | |
prompt += " " + custom_prompt.strip() | |
# Randomize seed if needed | |
if seed == -1: | |
seed = random.randint(0, 1000000) | |
# Initialize the pipeline | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16" | |
) | |
pipe.to("cpu") | |
# Connect the button to the function | |
generate_button.click( | |
generate, | |
inputs=[prompt_dropdown, team_dropdown, model_dropdown, custom_prompt_input], | |
outputs=[output_image, status_text] | |
) | |
# Generate the image | |
try: | |
image = pipe( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=torch.Generator("cuda").manual_seed(seed) | |
).images[0] | |
# Convert PIL image to bytes | |
img_byte_arr = io.BytesIO() | |
image.save(img_byte_arr, format='PNG') | |
img_byte_arr = img_byte_arr.getvalue() | |
except Exception as e: | |
return None, f"ERROR: Failed to generate image. Details: {e}" | |
# Save the image with a timestamped filename | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
try: | |
image.save(output_filename) | |
except Exception as e: | |
return img_byte_arr, "Image generated successfully!" | |
except Exception as e: | |
return None, f"ERROR: Failed to generate image. Details: {e}" | |
return output_filename, "Image generated successfully!" | |