Spaces:
Sleeping
Sleeping
File size: 5,444 Bytes
4f48282 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
#img_gen_modal.py
import modal
import sys
import os
import random
from datetime import datetime
import random
import io
from config.config import models, prompts # Indirect import
import gradio as gr
volume = modal.Volume.from_name("flux-model-vol") # Reference your volume
app = modal.App("ctb-ai-img-gen-mondal")
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# CtB AI Image Generator")
with gr.Row():
# Set default values for dropdowns
prompt_dropdown = gr.Dropdown(choices=[p["alias"] for p in prompts], label="Select Prompt", value=prompts[0]["alias"])
team_dropdown = gr.Dropdown(choices=["Red", "Blue"], label="Select Team", value="Red")
model_dropdown = gr.Dropdown(choices=[m["alias"] for m in models], label="Select Model", value=models[0]["alias"])
with gr.Row():
# Add a text box for custom user input (max 200 characters)
custom_prompt_input = gr.Textbox(label="Custom Prompt (Optional)", placeholder="Enter additional details (max 200 chars)...", max_lines=1, max_length=200)
with gr.Row():
generate_button = gr.Button("Generate Image")
with gr.Row():
output_image = gr.Image(label="Generated Image")
with gr.Row():
status_text = gr.Textbox(label="Status", placeholder="Waiting for input...", interactive=False)
@app.function(
volumes={"/volume": volume}, # Mount the volume to /volume
#gpu="T4",
timeout=600
)
def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1):
import gradio as gr
try:
# Generate the image
image_path, message = generate_image(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed)
return image_path, message
except Exception as e:
return None, f"An error occurred: {e}"
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640,
num_inference_steps=20, guidance_scale=2.0, seed=-1):
import torch
from diffusers import StableDiffusionPipeline
# Debug: Check if the volume is mounted correctly
print("Debug: Checking volume contents...")
try:
volume_contents = os.listdir("/volume")
print(f"Debug: Volume contents: {volume_contents}")
except Exception as e:
print(f"Debug: Error checking volume contents: {e}")
# Find the selected prompt and model
try:
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
model_name = next(m for m in models if m["alias"] == model_alias)["name"]
except StopIteration:
return None, "ERROR: Invalid prompt or model selected."
# Debug: Check if the model directory exists
print(f"Debug: Checking if model directory exists: {model_name}")
if not os.path.exists(model_name):
return None, f"ERROR: Model directory not found at {model_name}"
# Initialize the pipeline using the local model
print("Debug: Loading model...")
# Determine the enemy color
enemy_color = "blue" if team_color.lower() == "red" else "red"
# Print the original prompt and dynamic values for debugging
print("Original Prompt:")
print(prompt)
print(f"Enemy Color: {enemy_color}")
print(f"Team Color: {team_color.lower()}")
# Format the prompt
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)
# Print the formatted prompt for debugging
print("\nFormatted Prompt:")
print(prompt)
# Append custom prompt if provided
if custom_prompt and len(custom_prompt.strip()) > 0:
prompt += " " + custom_prompt.strip()
# Randomize seed if needed
if seed == -1:
seed = random.randint(0, 1000000)
# Initialize the pipeline
pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
pipe.to("cpu")
# Connect the button to the function
generate_button.click(
generate,
inputs=[prompt_dropdown, team_dropdown, model_dropdown, custom_prompt_input],
outputs=[output_image, status_text]
)
# Generate the image
try:
image = pipe(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=torch.Generator("cuda").manual_seed(seed)
).images[0]
# Convert PIL image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
except Exception as e:
return None, f"ERROR: Failed to generate image. Details: {e}"
# Save the image with a timestamped filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
try:
image.save(output_filename)
except Exception as e:
return img_byte_arr, "Image generated successfully!"
except Exception as e:
return None, f"ERROR: Failed to generate image. Details: {e}"
return output_filename, "Image generated successfully!"
|