CtB-AI-img-gen / local_version /img_gen_local.py
Andre
update 1.1
4f48282
#img_gen_modal.py
import modal
import random
import io
from config.config import prompts, models # Indirect import
import os
import gradio as gr
#MOVED FROM IMAGE IMPORT LIST
import torch
import sentencepiece
import torch
from huggingface_hub import login
from transformers import AutoTokenizer
import random
from datetime import datetime
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, AutoPipelineForText2Image
from src.check_dependecies import check_dependencies
# MAIN GENERATE IMAGE FUNCTION
def generate_image(
prompt_alias,
team_color,
custom_prompt,
model_alias="FLUX.1-dev",
height=36,
width=64,
num_inference_steps=2,
guidance_scale=2.0,
seed=-1,
progress=gr.Progress(track_tqdm=True) # Add progress parameter
):
print("Hello from ctb_local!")
print("Running debug check...")
# Debug function to check installed packages
check_dependencies()
# Find the selected prompt and model
try:
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
model_name = next(m for m in models if m["alias"] == model_alias)["name"]
except StopIteration:
return None, "ERROR: Invalid prompt or model selected."
# Determine the enemy color
enemy_color = "blue" if team_color.lower() == "red" else "red"
# Print the original prompt and dynamic values for debugging
print("Original Prompt:")
print(prompt)
print(f"Enemy Color: {enemy_color}")
print(f"Team Color: {team_color.lower()}")
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)
# Print the formatted prompt for debugging
print("\nFormatted Prompt:")
print(prompt)
# Append the custom prompt (if provided)
if custom_prompt and len(custom_prompt.strip()) > 0:
prompt += " " + custom_prompt.strip()
# Randomize the seed if needed
if seed == -1:
seed = random.randint(0, 1000000)
try:
print("Initializing HF TOKEN")
hf_token = os.environ["HF_TOKEN"]
print(hf_token)
print("HF TOKEN:")
login(token=hf_token)
print("model_name:")
print(model_name)
# Use absolute path with leading slash
model_path = f"models/{model_alias}"
print(f"Loading model from local path: {model_path}")
# Debug: Check if the directory exists and list its contents
if os.path.exists(model_path):
print("Directory exists. Contents:")
for item in os.listdir(model_path):
print(f" - {item}")
else:
# print(f"Directory does not exist: {local_path}")
print(f"Contents of {model_path}:")
# print(os.listdir("/data"))
# CHECK FOR TORCH USING CUDA
print("CHECK FOR TORCH USING CUDA")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print("inside if")
print(f"CUDA device count: {torch.cuda.device_count()}")
print(f"Current device: {torch.cuda.current_device()}")
print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}")
######### INITIALIZING CPU PIPE ##########
print("-----LOADING QUANTA-----")
ckpt_path = (
"models/FLUX.1-dev-gguf/flux1-dev-Q2_K.gguf"
)
transformer = FluxTransformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
print("-----INITIALIZING PIPE-----")
pipe = FluxPipeline.from_pretrained(
model_path,
transformer = transformer,
torch_dtype=torch.bfloat16,
#torch_dtype=torch.float16,
#torch_dtype=torch.float32,
local_files_only=True,
)
if torch.cuda.is_available():
print("CUDA available")
print("using gpu")
pipe = pipe.to("cuda")
pipe_message = "CUDA"
else:
print("CUDA not available")
print("using cpu")
pipe = pipe.to("cpu")
pipe_message = "CPU"
#pipe.enable_model_cpu_offload() # Use official recommended method
print(f"-----{pipe_message} PIPE INITIALIZED-----")
print(f"Using device: {pipe.device}")
except Exception as e:
print(f"Detailed error: {str(e)}")
return None, f"ERROR: Failed to initialize PIPE2. Details: {e}"
try:
print("-----SENDING IMG GEN TO PIPE-----")
print("-----HOLD ON-----")
########## SENDING IMG GEN TO PIPE - WORKING CODE ##########
image = pipe(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
max_sequence_length=512,
# seed=seed
).images[0]
#############################################################
print("-----IMAGE GENERATED SUCCESSFULLY!-----")
print(image)
except Exception as e:
return f"ERROR: Failed to initialize InferenceClient. Details: {e}"
try:
print("-----SAVING-----")
print("-----DONE!-----")
print("-----CALL THE BANNERS!-----")
# Save the image with a timestamped filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
# Save the image using PIL's save method
image.save(output_filename)
print(f"File path: {output_filename}")
except Exception as e:
print(f"ERROR: Failed to save image. Details: {e}")
# Return the filename and success message
return image