#img_gen_modal.py import modal import random import io from config.config import prompts, models # Indirect import import os import gradio as gr #MOVED FROM IMAGE IMPORT LIST import torch import sentencepiece import torch from huggingface_hub import login from transformers import AutoTokenizer import random from datetime import datetime from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, AutoPipelineForText2Image from src.check_dependecies import check_dependencies # MAIN GENERATE IMAGE FUNCTION def generate_image( prompt_alias, team_color, custom_prompt, model_alias="FLUX.1-dev", height=36, width=64, num_inference_steps=2, guidance_scale=2.0, seed=-1, progress=gr.Progress(track_tqdm=True) # Add progress parameter ): print("Hello from ctb_local!") print("Running debug check...") # Debug function to check installed packages check_dependencies() # Find the selected prompt and model try: prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] model_name = next(m for m in models if m["alias"] == model_alias)["name"] except StopIteration: return None, "ERROR: Invalid prompt or model selected." # Determine the enemy color enemy_color = "blue" if team_color.lower() == "red" else "red" # Print the original prompt and dynamic values for debugging print("Original Prompt:") print(prompt) print(f"Enemy Color: {enemy_color}") print(f"Team Color: {team_color.lower()}") prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) # Print the formatted prompt for debugging print("\nFormatted Prompt:") print(prompt) # Append the custom prompt (if provided) if custom_prompt and len(custom_prompt.strip()) > 0: prompt += " " + custom_prompt.strip() # Randomize the seed if needed if seed == -1: seed = random.randint(0, 1000000) try: print("Initializing HF TOKEN") hf_token = os.environ["HF_TOKEN"] print(hf_token) print("HF TOKEN:") login(token=hf_token) print("model_name:") print(model_name) # Use absolute path with leading slash model_path = f"models/{model_alias}" print(f"Loading model from local path: {model_path}") # Debug: Check if the directory exists and list its contents if os.path.exists(model_path): print("Directory exists. Contents:") for item in os.listdir(model_path): print(f" - {item}") else: # print(f"Directory does not exist: {local_path}") print(f"Contents of {model_path}:") # print(os.listdir("/data")) # CHECK FOR TORCH USING CUDA print("CHECK FOR TORCH USING CUDA") print(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print("inside if") print(f"CUDA device count: {torch.cuda.device_count()}") print(f"Current device: {torch.cuda.current_device()}") print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}") ######### INITIALIZING CPU PIPE ########## print("-----LOADING QUANTA-----") ckpt_path = ( "models/FLUX.1-dev-gguf/flux1-dev-Q2_K.gguf" ) transformer = FluxTransformer2DModel.from_single_file( ckpt_path, quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16), torch_dtype=torch.bfloat16, ) print("-----INITIALIZING PIPE-----") pipe = FluxPipeline.from_pretrained( model_path, transformer = transformer, torch_dtype=torch.bfloat16, #torch_dtype=torch.float16, #torch_dtype=torch.float32, local_files_only=True, ) if torch.cuda.is_available(): print("CUDA available") print("using gpu") pipe = pipe.to("cuda") pipe_message = "CUDA" else: print("CUDA not available") print("using cpu") pipe = pipe.to("cpu") pipe_message = "CPU" #pipe.enable_model_cpu_offload() # Use official recommended method print(f"-----{pipe_message} PIPE INITIALIZED-----") print(f"Using device: {pipe.device}") except Exception as e: print(f"Detailed error: {str(e)}") return None, f"ERROR: Failed to initialize PIPE2. Details: {e}" try: print("-----SENDING IMG GEN TO PIPE-----") print("-----HOLD ON-----") ########## SENDING IMG GEN TO PIPE - WORKING CODE ########## image = pipe( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, max_sequence_length=512, # seed=seed ).images[0] ############################################################# print("-----IMAGE GENERATED SUCCESSFULLY!-----") print(image) except Exception as e: return f"ERROR: Failed to initialize InferenceClient. Details: {e}" try: print("-----SAVING-----") print("-----DONE!-----") print("-----CALL THE BANNERS!-----") # Save the image with a timestamped filename timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_filename = f"/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" # Save the image using PIL's save method image.save(output_filename) print(f"File path: {output_filename}") except Exception as e: print(f"ERROR: Failed to save image. Details: {e}") # Return the filename and success message return image