Spaces:
Running
Running
import configparser | |
import logging | |
import os | |
import shutil | |
import traceback | |
import json | |
import fnmatch | |
def run_model( | |
input_path: str, | |
model_path: str, | |
verbose: str = "info", | |
task: str = "CT_Airways", | |
name: str = "Airways", | |
): | |
if verbose == "debug": | |
logging.getLogger().setLevel(logging.DEBUG) | |
elif verbose == "info": | |
logging.getLogger().setLevel(logging.INFO) | |
elif verbose == "error": | |
logging.getLogger().setLevel(logging.ERROR) | |
else: | |
raise ValueError("Unsupported verbose value provided:", verbose) | |
# delete patient/result folder if they exist | |
if os.path.exists("./patient/"): | |
shutil.rmtree("./patient/") | |
if os.path.exists("./result/"): | |
shutil.rmtree("./result/") | |
patient_directory = "" | |
output_path = "" | |
try: | |
# setup temporary patient directory | |
filename = input_path.split("/")[-1] | |
splits = filename.split(".") | |
extension = ".".join(splits[1:]) | |
patient_directory = "./patient/" | |
os.makedirs(patient_directory + "T0/", exist_ok=True) | |
shutil.copy( | |
input_path, | |
patient_directory + "T0/" + splits[0] + "-t1gd." + extension, | |
) | |
# define output directory to save results | |
output_path = "./result/prediction-" + splits[0] + "/" | |
os.makedirs(output_path, exist_ok=True) | |
# Setting up the configuration file | |
rads_config = configparser.ConfigParser() | |
rads_config.add_section("Default") | |
rads_config.set("Default", "task", "mediastinum_diagnosis") | |
rads_config.set("Default", "caller", "") | |
rads_config.add_section("System") | |
rads_config.set("System", "gpu_id", "-1") | |
rads_config.set("System", "input_folder", patient_directory) | |
rads_config.set("System", "output_folder", output_path) | |
rads_config.set("System", "model_folder", model_path) | |
rads_config.set('System', 'pipeline_filename', os.path.join(output_path, | |
'test_pipeline.json')) | |
rads_config.add_section("Runtime") | |
rads_config.set("Runtime", "reconstruction_method", "thresholding") # thresholding, probabilities | |
rads_config.set("Runtime", "reconstruction_order", "resample_first") | |
rads_config.set("Runtime", "use_preprocessed_data", "False") | |
with open("rads_config.ini", "w") as f: | |
rads_config.write(f) | |
pip = {} | |
step_index = 1 | |
pip_num = str(step_index) | |
pip[pip_num] = {} | |
pip[pip_num]["task"] = "Classification" | |
pip[pip_num]["inputs"] = {} # Empty input means running it on all existing data for the patient | |
pip[pip_num]["target"] = ["MRSequence"] | |
pip[pip_num]["model"] = "MRI_SequenceClassifier" | |
pip[pip_num]["description"] = "Classification of the MRI sequence type for all input scans." | |
step_index = step_index + 1 | |
pip_num = str(step_index) | |
pip[pip_num] = {} | |
pip[pip_num]["task"] = 'Model selection' | |
pip[pip_num]["model"] = task | |
pip[pip_num]["timestamp"] = 0 | |
pip[pip_num]["format"] = "thresholding" | |
pip[pip_num]["description"] = f"Identifying the best {task} segmentation model for existing inputs" | |
with open(os.path.join(output_path, 'test_pipeline.json'), 'w', newline='\n') as outfile: | |
json.dump(pip, outfile, indent=4, sort_keys=True) | |
# finally, run inference | |
from raidionicsrads.compute import run_rads | |
run_rads(config_filename="rads_config.ini") | |
logging.info(f"Looking for the following pattern: {task}") | |
patterns = [f"*-{name}.*"] | |
existing_files = os.listdir(os.path.join(output_path, "T0")) | |
logging.info(f"Existing files: {existing_files}") | |
fileName = str(os.path.join(output_path, "T0", | |
[x for x in existing_files if | |
any(fnmatch.fnmatch(x, pattern) for pattern in patterns)][0])) | |
os.rename(src=fileName, dst="./prediction.nii.gz") | |
# Clean-up | |
if os.path.exists(patient_directory): | |
shutil.rmtree(patient_directory) | |
if os.path.exists(output_path): | |
shutil.rmtree(output_path) | |
except Exception: | |
print(traceback.format_exc()) | |
# Clean-up | |
if os.path.exists(patient_directory): | |
shutil.rmtree(patient_directory) | |
if os.path.exists(output_path): | |
shutil.rmtree(output_path) | |