pdiscoformer / utils /visualize_att_maps.py
ananthu-aniraj's picture
improve visualization code
ba377fa
import colorcet as cc
import numpy as np
import skimage
import torch
from utils.transform_utils import inverse_normalize_w_resize
# Define the colors to use for the attention maps
colors = cc.glasbey_category10
class VisualizeAttentionMaps:
def __init__(self, snapshot_dir="", save_resolution=(256, 256), alpha=0.5, bg_label=0, num_parts=15):
"""
Plot attention maps and optionally landmark centroids on images.
:param snapshot_dir: Directory to save the visualization results
:param save_resolution: Size of the images to save
:param alpha: The transparency of the attention maps
:param bg_label: The background label index in the attention maps
:param num_parts: The number of parts in the attention maps
"""
self.save_resolution = save_resolution
self.alpha = alpha
self.bg_label = bg_label
self.snapshot_dir = snapshot_dir
self.resize_unnorm = inverse_normalize_w_resize(resize_resolution=self.save_resolution)
self.num_parts = num_parts
self.figs_size = (10, 10)
@torch.no_grad()
def show_maps(self, ims, maps):
"""
Plot images, attention maps and landmark centroids.
Parameters
----------
ims: Tensor, [batch_size, 3, width_im, height_im]
Input images on which to show the attention maps
maps: Tensor, [batch_size, number of parts + 1, width_map, height_map]
The attention maps to display
"""
ims = self.resize_unnorm(ims)
ims = (ims.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
map_argmax = torch.nn.functional.interpolate(maps.clone().detach(), size=self.save_resolution,
mode='bilinear',
align_corners=True).argmax(dim=1).cpu().numpy()
# Select colors for parts which are present
parts_present = np.unique(map_argmax).tolist()
if self.bg_label in parts_present:
parts_present.remove(self.bg_label)
colors_present = [colors[i] for i in parts_present]
curr_map = skimage.color.label2rgb(label=map_argmax[0], image=ims[0], colors=colors_present,
bg_label=self.bg_label, alpha=self.alpha)
return curr_map